Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T02:58:09.975Z Has data issue: false hasContentIssue false

Electromagnetic and electrostatic wavesin a multi-component plasma near the lower hybrid frequency

Published online by Cambridge University Press:  13 March 2009

M. Hamelin
Affiliation:
CRPE, Orleans, France
C. Beghin
Affiliation:
CRPE, Orleans, France

Abstract

In propagation perpendicular to the magnetic field, the lower hybrid frequency is the transition between long electromagnetic and short electrostatic waves. Cold, warm and hot plasma theories are applied to the case of a plasma composed of different ion species. For cold and warm (adiabatic) theories, the dispersion curves are not qualitatively different from the single-ion case. In the hot microscopic theory, the dispersion curves, the so-called ‘Bernstein modes’, have a structure mainly related to the lightest ion gyroharmonics, even in concentration as low as 1 %. The theoretical results can explain the ray structure observed in the ISIS II and Electron Echo 1 experiments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M., & Stegun, I. 1964 Handbook of Mathematical Funtions. NBS, Applied Mathematical Series 55.Google Scholar
Beghin, C., & Debrier, R. 1972 J. Plasma Phys. 8, 287.Google Scholar
Bekefi, G. 1966 Radiation Processes in Plasmas. Wiley.Google Scholar
Bernstein, I. B. 1958 Phys. Rev. 109, 10.Google Scholar
Cartwright, D. G., & Kellog, P. J. 1974 J. Geophys. Res. 79, 1439.Google Scholar
Cerisier, J. C. 1970 Plasma waves in Space and in the Laboratory, vol. 2. Edinburgh University Press.Google Scholar
Kaldaze, T. D., Lominadze, D. G., & Stepanov, K. N. 1972 Soviet Phys.Tech. Phys. 17, 196.Google Scholar
Lewis, R. M., & Keller, J. B. 1962 Phys. Fluids, 5, 1248.CrossRefGoogle Scholar
Palmer, F. H., & Barrington, R. E. 1973 J. Geophys. Res. 78, 8167.CrossRefGoogle Scholar
Quemada, D. 1968 Ondes dans les plasmas. Paris: Hermann.Google Scholar
Sitenko, K. G., & Stepanov, K. N. 1956 Soviet Phys. JETP, 4, 512.Google Scholar
Sizonenko, V. L., & Stepanov, K. N. 1971 Ukr. Fiz. Zh. 16, 438.Google Scholar
Yvon, J. 1966 Les correlations et l'Entropie en mécanique statistique classique. Paris: Dunod.Google Scholar