Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-02T19:06:34.277Z Has data issue: false hasContentIssue false

Effect of the electron beam modulation on the sub-THz generation in the vircator with the field-emission cathode

Published online by Cambridge University Press:  17 March 2015

S. A. Kurkin*
Affiliation:
Saratov State University, Astrakhanskaya Street, 83, Saratov, 410012, Russia Saratov State Technical University, Politechnicheskaya Street, 77, Saratov, 410054, Russia
A. A. Koronovskii
Affiliation:
Saratov State University, Astrakhanskaya Street, 83, Saratov, 410012, Russia Saratov State Technical University, Politechnicheskaya Street, 77, Saratov, 410054, Russia
A. E. Hramov
Affiliation:
Saratov State University, Astrakhanskaya Street, 83, Saratov, 410012, Russia Saratov State Technical University, Politechnicheskaya Street, 77, Saratov, 410054, Russia
*
Email address for correspondence: [email protected]

Abstract

In this paper, we focus on the numerical investigation of the vircator with a controlling emission from a field-emission cathode. The external harmonic signal is added to the accelerating electric field in the beam formation region and effects on the beam emission process leading to the electron emission modulation. As a consequence, the beam is injected into the drift chamber of the vircator being density-modulated. The strong influence of the modulation parameters (modulation depth and frequency) on the characteristics of virtual cathode oscillations has been discovered. We have shown that the tuning of the modulation frequency to the harmonics of the basic frequency of virtual cathode oscillations leads to the considerable power increase of its higher harmonics in the output spectrum.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anfinogentov, V. G. and Hramov, A. E. 2001 Oscillation conditions of the vircator klystron with external delayed feedback: a computer simulation. Commun. Technol. Electron. 46 (5), 546549.Google Scholar
Antonsen, T. M., Mondelli, A. A., Levush, B., Verboncoeur, J. P. and Birdsall, C. K. 1999 Advances in modelling and simulation of vacuum electron devices. Proc. IEEE 87 (5), 804839.CrossRefGoogle Scholar
Benford, J., Swegle, J. A. and Schamiloglu, E. 2007 High Power Microwaves. Boca Raton: CRC Press, Taylor and Francis.CrossRefGoogle Scholar
Birdsall, C. K. and Langdon, A. B. 1985 Plasma Physics, Via Computer Simulation. NY: McGraw-Hill.Google Scholar
Birdsall, C. K. and Langdon, A. B. 2005 Plasma Physics Via Computer Simulation. NY: Taylor and Francis Group.Google Scholar
Burkhart, S. C., Scarpetty, R. D. and Lundberg, R. L. 1985 A virtual cathode reflex triode for high power microwave generation. J. Appl. Phys. 58 (1), 28.CrossRefGoogle Scholar
Clements, K. R., Curry, R. D., Druce, R., Carter, W., Kovac, M., Benford, J. and McDonald, K. 2013 Design and operation of a dual vircator hpm source. IEEE Trans. Dielectr. Electr. Insul. 20 (4), 10851092.CrossRefGoogle Scholar
Dubinov, A. E. and Selemir, V. D. 2002 Electronic devices with virtual cathodes (review). J. Commun. Technol. Electron. 47 (6), 575.Google Scholar
Dubinov, A. E., Selemir, V. D. and Tsarev, A. V. 2000 Phased antenna arrays based on vircators: Numerical experiments. Radiophys. Quantum Electron. 43 (8), 637642.CrossRefGoogle Scholar
Dzbanovskii, N. N., Minakov, P. V., Pilevskii, A. A., Rakhimov, A. T., Seleznev, B. V., Suetin, N. V. and Yurev, A. Yu. 2005 High-current electron gun with a field-emission cathode and diamond grid. Tech. Phys. 50 (10), 1360.CrossRefGoogle Scholar
Egorov, E. N., Kalinin, Yu. A., Koronovskii, A. A., Hramov, A. E. and Morozov, M. Yu. 2006 Microwave generation power in a nonrelativistic electron beam with virtual cathode in a retarding electric field. Tech. Phys. Lett. 32 (5), 402405.CrossRefGoogle Scholar
Filatov, R. A., Hramov, A. E., Bliokh, Y. P., Koronovskii, A. A. and Felsteiner, J. 2009 Influence of background gas ionization on oscillations in a virtual cathode with a retarding potential. Phys. Plasmas 16 (3), 033106.CrossRefGoogle Scholar
Filatov, R. A., Hramov, A. E. and Koronovskii, A. A. 2006 Chaotic synchronization in coupled spatially extended beam-plasma systems. Phys. Lett. A 358, 301308.CrossRefGoogle Scholar
Forbes, R. G. 2008 Physics of generalized Fowler-Nordheim-type equations. J. Vac. Sci. Technol. B 26 (2), 788.CrossRefGoogle Scholar
Gadetskii, N. N., Magda, I. I., Naisteter, S. I., Prokopenko, Yu. V. and Tchumakov, V. I. 1993 The virtode: a generator using supercritical reb current with controlled feedback. Plasma Phys. Rep. 19, 273.Google Scholar
Gold, S. H. and Nusinovich, G. S. 1997 Review of high-power microwave source research. Rev. Sci. Instrum. 68 (11), 39453974.CrossRefGoogle Scholar
Singh, G. and Chaturvedi, S. 2008 Secondary virtual-cathode formation in a low-voltage vircator: pic simulations. IEEE Trans. Plasma Sci. 36 (3), 694700.CrossRefGoogle Scholar
Hendricks, K. J., Adler, R. and Noggle, R. C. 1990 Experimental results of phase locking two virtual cathode oscillators. J. Appl. Phys. 68 (2), 820828.CrossRefGoogle Scholar
Hoeberling, R. F. and Fazio, M. V. 1992 Advances in virtual cathode microwave sources. IEEE Trans. Electromagn. Compat. 34 (3), 252258.CrossRefGoogle Scholar
Hramov, A. E., Koronovskii, A. A. and Kurkin, S. A. 2010 Numerical study of chaotic oscillations in the electron beam with virtual cathode in the external non-uniform magnetic fields. Phys. Lett. A 374, 30573066.CrossRefGoogle Scholar
Hramov, A. E., Koronovsky, A. A., Kurkin, S. A. and Rempen, I. S. 2011 Chaotic oscillations in electron beam with virtual cathode in external magnetic field. Int. J. Electron. 98 (11), 15491564.CrossRefGoogle Scholar
Hramov, A. E., Kurkin, S. A., Koronovskii, A. A. and Filatova, A. E. 2012 Effect of self-magnetic fields on the nonlinear dynamics of relativistic electron beam with virtual cathode. Phys. Plasmas 19 (11), 112101.CrossRefGoogle Scholar
Jiang, W., Shimada, N., Prasad, S. D. and Yatsui, K. 2004 Experimental and simulation studies of new configuration of virtual cathode oscillator. IEEE Trans. Plasma Sci. 32 (1), 5459.CrossRefGoogle Scholar
Kalinin, Yu. A., Koronovskii, A. A., Hramov, A. E., Egorov, E. N. and Filatov, R. A. 2005 Experimental and theoretical investigations of stochastic oscillatory phenomena in a nonrelativistic electron beam with a virtual cathode. Plasma Phys. Rep. 31 (11), 938952.CrossRefGoogle Scholar
Koronovskii, A. A. and Hramov, A. E. 2002 Wavelet bicoherence analysis as a method for investigating coherent structures in an electron beam with an overcritical current. Plasma Phys. Rep. 28 (8), 666.CrossRefGoogle Scholar
Kostov, K. G., Nikolov, N. A. and Spassov, V. A. 1993 Excitation of transverse electric modes in axially extracted virtual cathode oscillator. Electron. Lett. 29 (12), 10691070.CrossRefGoogle Scholar
Kostov, K. G., Yovchev, I. G. and Nikolov, N. A. 1999 Numerical investigation of microwave generation in foilless diode vircator. Electron. Lett. 35 (19), 16471648.CrossRefGoogle Scholar
Kovalchuk, B. M., Polevin, S. D., Tsygankov, R. V. and Zherlitsyn, A. A. 2010 S-band coaxial vircator with electron beam premodulation based on compact linear transformer driver. IEEE Trans. Plasma Sci. 38 (10), 28192824.CrossRefGoogle Scholar
Krasik, Y. E., Yarmolich, D., Gleizer, J. Z., Vekselman, V., Hadas, Y., Gurovich, Tz. V. and Felsteiner, J. 2009 Pulsed plasma electron sources. Phys. Plasmas 16 (5), 057103.CrossRefGoogle Scholar
Kurkin, S. A., Badarin, A. A., Koronovskii, Alexey A. and Hramov, Alexander E. 2014 Higher harmonics generation in relativistic electron beam with virtual cathode. Phys. Plasmas (1994-present) 21 (9), 093105.CrossRefGoogle Scholar
Kurkin, S. A. and Hramov, A. E. 2009 Virtual cathode formation in annular electron beam in an external magnetic field. Tech. Phys. Lett. 35 (1), 2325.CrossRefGoogle Scholar
Kurkin, S. A., Hramov, A. E. and Koronovskii, A. A. 2013 Microwave radiation power of relativistic electron beam with virtual cathode in the external magnetic field. Appl. Phys. Lett. 103, 043507.CrossRefGoogle Scholar
Kurkin, S. A., Koronovskii, A. A. and Hramov, A. E. 2011 Output microwave radiation power of low-voltage vircator with external inhomogeneous magnetic field. Tech. Phys. Lett. 37 (4), 356359.CrossRefGoogle Scholar
Liu, G., Shao, H., Yang, Z., Song, Z., Chen, C. H., Sun, J. and Zhang, Y. 2008 Coaxial cavity vircator with enhanced efficiency. J. Plasma Phys. 74, 233244.CrossRefGoogle Scholar
Mahaffey, R. A., Sprangle, P. A., Golden, J. and Kapetanakos, C. A. 1977 High–power microwaves from a non-isochronous reflecting electron system. Phys. Rev. Lett. 39 (13), 843.CrossRefGoogle Scholar
Morey, I. J. and Birdsall, C. K. 1990 Travelling-wave-tube simulation: the IBC code. IEEE Trans. Plasma Sci. 18 (3), 482.CrossRefGoogle Scholar
Moskalenko, O. I., Phrolov, N. S., Koronovskii, A. A. and Hramov, A. E. 2013 Synchronization in the network of chaotic microwave oscillators. Eur. Phys. J. Spec. Top. 222, 25712582.CrossRefGoogle Scholar
Nation, J. A., Schachter, L., Mako, F. M., Len, L. K., Peter, W., Tang, C. M. and Sriniva-san Rao, T. 2014 Advances in cold cathode physics and technology. Proc. IEEE 87 (5), 865889.CrossRefGoogle Scholar
Phrolov, N. S., Koronovskii, A. A., Kalinin, Yu. A., Kurkin, S. A. and Hramov, A. E. 2014 The effect of an external signal on output microwave power of a low-voltage vircator. Phys. Lett. A 378, 24232428.CrossRefGoogle Scholar
Rozhnev, A. G., Ryskin, N. M., Sokolov, D. V., Trubetskov, D. I., Han, S. T., Kim, J. I. and Park, G. S. 2002 Novel concepts of vacuum microelectronic microwave devices with field emitter cathode arrays. Phys. Plasmas. 9 (9), 40204027.CrossRefGoogle Scholar
Shao, H., Liu, G. and Yang, Z. 2005 Electron beam–electromagnetic field interaction in one-dimensional coaxial vircator. J. Plasma Phys. 71 (5), 563578.CrossRefGoogle Scholar
Shlapakovski, A. S., Kweller, T., Hadas, Y., Krasik, Y. E., Polevin, S. D. and Kurkan, I. K. 2009 Effects of different cathode materials on submicrosecond double-gap vircator operation. IEEE Trans. Plasma Sci. 37 (7), 12331241.CrossRefGoogle Scholar
Shlapakovski, A. S., Queller, T., Bliokh, Yu. P. and Krasik, Y. E. 2012 Investigations of a double-gap vircator at sub-microsecond pulse durations. IEEE Trans. Plasma Sci. 40 (6), 16071617.CrossRefGoogle Scholar
Siegel, P. H., Fung, A., Manohara, H., Xu, J. and Chang, B. 2001 Nanoklystron: a monolithic tube approach to thz power generation. In: Proc. 12th Int. Symp. on Space Terahertz Technology, pp. 81–90.Google Scholar
Stern, T. E., Gossling, B. S. and Fowler, R. H. 1929 Further studies in the emission of electrons from cold metals. Proc. R. Soc. A 124 (795), 699723.Google Scholar
Sullivan, D. J., Walsh, J. E. and Coutsias, E. A. 1987 Virtual cathode oscillator (vircator) theory. High Power Microwave Sources, vol. 13 (ed. Granatstein, V. I. and Alexeff, I.). Norwood, MA: Artech House Microwave Library.Google Scholar
Sze, H., Price, D., Harteneck, B. and Cooksey, N. 1990 A master-oscillator-driven phase-locked vircator array. J. Appl. Phys. 68 (7), 30733079.CrossRefGoogle Scholar
Verma, R.et al. 2014 Characterization of high power microwave radiation by an axially extracted vircator. IEEE Trans. Electron Devices 61 (1), 141146.CrossRefGoogle Scholar
Woo, W., Benford, J., Fittinghoff, D., Harteneck, B., Price, D., Smith, R. and Sze, H. 1989 Phase locking of high-power microwave oscillator. J. Appl. Phys. 65 (2), 861.CrossRefGoogle Scholar
Yang, Z., Liu, G., Shao, H., Sun, J., Zhang, Y., Ye, H. and Yang, M. 2013 Numerical simulation study and preliminary experiments of a coaxial vircator with radial dual-cavity premodulation. IEEE Trans. Plasma Sci. 41 (12), 36043610.CrossRefGoogle Scholar