Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-29T04:10:55.743Z Has data issue: false hasContentIssue false

Effect of spin-induced magnetization and Hall current on self-gravitational instability of magnetized viscous quantum plasma

Published online by Cambridge University Press:  15 October 2014

Prerana Sharma*
Affiliation:
Physics Department, Ujjain Engineering College, Ujjain, MP 456010, India
R. K. Chhajlani
Affiliation:
School of Studies in Physics, Vikram University, Ujjain, MP 456010, India
*
Email address for correspondence: [email protected]

Abstract

The Jeans self-gravitational instability is studied for dense quantum viscous plasma with Hall term and intrinsic magnetization generated by collective electron spin. The quantum magnetohydrodynamic model is employed to formulate the basic equations of the problem. The dispersion relation is obtained using the normal mode analysis, and further reduced for both transverse and longitudinal modes of propagation. The transverse mode of propagation is found to be unaffected by the Hall term but affected by quantum effect, viscosity, and magnetization parameters. The Jeans criterion of instability in the transverse direction is modified by Alfven velocity, magnetization parameter, and quantum effect. The non-gravitating magnetized mode is obtained in the longitudinal direction, which is modified by Hall parameter and is not affected by quantum term, whereas the gravitational mode is unaffected by the magnetization parameter but affected by viscosity and quantum parameters. It is observed that the Jeans condition of instability is affected by the quantum term. The growth rate of Jeans instability is plotted for various values of magnetization, quantum, and viscosity parameters of the quantum plasma medium.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asenjo, F. A. 2012 Phys. Letts. A 376, 2496.Google Scholar
Asenjo, F. A., Muñoz, V., Valdivia, J. A. and Mahajan, S. M. 2011 Phys. Plasmas 18, 012107.Google Scholar
Brodin, G. and Marklund, M. 2007a New J. Phys. 9, 277.Google Scholar
Brodin, G. and Marklund, M. 2007b Phys. Rev. E 76, 055403(R).CrossRefGoogle Scholar
Brodin, G., Marklund, M., Zamanian, J. and Mana, P. L. 2008 Phys. Rev. Lett. 101, 245002.CrossRefGoogle Scholar
Bychkov, V., Modestov, M. and Marklund, M. 2010 Phys. Plasmas 17, 112107.Google Scholar
Chandrasekhar, S. 1961 Hydrodynamic & Hydromagnetic Stability. London: Oxford University Press.Google Scholar
Chhajlani, R. K. and Parihar, A. K. 1993 Contrib. Plasma Phys. 33, 227.CrossRefGoogle Scholar
Fletcher, R. S., Zhang, X. L. and Rolston, S. L. 2006 Phys. Rev. Lett. 96, 105003.CrossRefGoogle Scholar
Glenzer, S. H.et al. 2007 Phys. Rev. Lett. 98, 065002.Google Scholar
Haas, F. 2005 Phys. Plasmas 12, 062117.CrossRefGoogle Scholar
Haas, F. 2007 Europhys. Lett. 77, 45004.CrossRefGoogle Scholar
Haas, F., Garcia, L. G., Goedert, J. and Manfredi, G. 2003 Phys. Plasmas 10, 3858.Google Scholar
Haas, F., Manfredi, G. and Feix, M. 2000 Phys. Rev. E 62, 2763.Google Scholar
Hans, H. K. 1966 Ann. Astrophys. 29, 339.Google Scholar
Harding, A. K. and Lai, D. 2006 Rep. Prog. Phys. 69, 2631.Google Scholar
Iqbal, M. and Shukla, P. K. 2012 J. Plasma Phys. 78, 207.CrossRefGoogle Scholar
Jung, Y. D. 2001 Phys. Plasmas 8, 3842.Google Scholar
Kalra, G. L. and Talwar, S. P. 1964 Ann. Asrophys. 27, 102.Google Scholar
Kremp, D., Bornath, Th., Bonitz, M. and Schlanges, M. 1999 Phys. Rev. E 60, 4725.Google Scholar
Lundin, J., Marklund, M. and Brodin, G. 2008 Phys. Plasmas 15, 072116.CrossRefGoogle Scholar
Manfredi, G. 2005 Fields Inst. Commun. 46, 263.Google Scholar
Manfredi, G. and Haas, F. 2001 Phys. Rev. B 64, 075316.Google Scholar
Marklund, M. and Brodin, G. 2007 Phys. Rev. Lett. 98, 025001.CrossRefGoogle Scholar
Mengesha, A. and Tessema, S. B. 2013 J. Plasma Phys. 79, 535.Google Scholar
Misra, A. P., Brodin, G., Marklund, M. and Shukla, P. K. 2010 J. Plasma Phys. 76, 857.Google Scholar
Modestov, M., Bychkov, V. and Marklund, M. 2009 Phys. Plasmas 16, 032106.CrossRefGoogle Scholar
Opher, M., Silva, L. O., Dauger, D. E., Decyk, V. K. and Dawson, J. M. 2001 Phys. Plasmas 8, 2454.Google Scholar
Prajapati, R. P. and Chhajlani, R. K. 2010 Phys. Scr. 82, 055003.CrossRefGoogle Scholar
Prajapati, R. P., Pensia, R. K., Kaothekar, S. and Chhajlani, R. K. 2010 Astrophys. Space Sci. 327, 139.Google Scholar
Prajapati, R. P., Soni, G. D. and Chhajlani, R. K. 2008 Phys. Plasmas 15, 062108.Google Scholar
Ren, H., Wu, Z., Cao, J. and Chu, P. K. 2009 Phys. Plasmas 16, 072101.CrossRefGoogle Scholar
Shaikh, S, Khan, A. and Bhatia, P. K. 2008 Phys. Lett. A 372, 1451.Google Scholar
Sharma, R. C. 1974 Astrophys. Space Sci. 29, L1.Google Scholar
Sharma, P. and Chhajlani, R. K. 2014a Astrophys. Space Sci. 352, 175.Google Scholar
Sharma, P. and Chhajlani, R. K. 2014b Phys. Plasmas 21, 032101.CrossRefGoogle Scholar
Shukla, P. K. 2006 Phys. Lett. A 352, 242.Google Scholar
Shukla, N., Shukla, P. K., Eliasson, B. and Stenflo, L. 2010 Phys. Lett. A 374, 1749.CrossRefGoogle Scholar
Shukla, P. K. and Stenflo, L. 2008 J. Plasma Phys. 74, 575.Google Scholar
Wu, Z., Ren, H., Cao, J. and Chu, P. K. 2010 Phys. Plasmas 17, 064503.CrossRefGoogle Scholar
Yang, X. F., Jiang Hong QI, X.-H. and Duan, W. S. 2011 Common Theor. Phys. 56, 769.Google Scholar
Zamanian, J., Brodin, G. and Marklund, M. 2009 New J. Phys. 11, 073017.Google Scholar