Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-23T18:22:06.276Z Has data issue: false hasContentIssue false

The effect of magnetic topology on particle acceleration in a three-dimensional reconnecting current sheet: a test-particle approach

Published online by Cambridge University Press:  01 April 2009

V. V. ZHARKOVA
Affiliation:
Department of Computing and Mathematics, University of Bradford, Bradford, BD7 1DP, [email protected]
O. V. AGAPITOV
Affiliation:
Physics Department, National Taras Shevchenko Taras Shevchenko University of Kyiv, 2 Glushkov prospect, Kyiv, 03022, Ukraine

Abstract

Electron and proton acceleration by a drifted super-Dreicer electric field is investigated in a strongly compressed non-neutral reconnecting current sheet (NRCS). The guiding field is assumed to be constant within a reconnecting current sheet (RCS) and parallel to the direction of the drifted electric field. The other two magnetic field components, transverse and tangential, are considered to vary exponentially and linearly with distances from the X-nullpoint. The proton and electron energy spectra are calculated numerically in a model RCS with different magnetic field topologies by solving an equation of motion in the test-particle approach with some test with a particle-in-cell (PIC) approach. Three kinds electric field generated inside a RCS are considered: a drifted electric field caused by the plasma inflows formed during a magnetic reconnection process; a polarization electric field induced by the accelerated protons and electrons; and a turbulent electric field induced by instabilities generated by accelerated particles. Electron and proton densities, and energy spectra inside a RCS and at ejection are found to be strongly affected by the magnetic field topology: for stronger magnetic fields the spectra are softer having a small higher-energy cutoff while for weaker magnetic fields the spectra are harder with much larger upper cutoff energies. Depending on the magnetic component ratios and drifted electric field magnitude, particles are found to be ejected either as quasi-thermal flows with very high temperatures or as focused power-law beams. A polarization field is found to reduce the acceleration time inside a RCS and to increase the energy gained by particles at acceleration by a pure drifted electric field by a few orders of magnitude. The turbulent electric field induced by the two beam instabilities of the same kind of particles leads to a significant increase in the number of particles with higher energies resulting in a flattening of their energy spectra.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arber, T. M. and Haines, D. V. 2006 J. Plasma Phys. 229, 51.Google Scholar
Benz, A. O. 2002 Plasma Astrophysics: Kinetic Processes in Solar and Stellar Coronae. Dordrecht: Kluwer.CrossRefGoogle Scholar
Birn, J., Drake, J. C., Shay, M. A. et al. 2001 J. Geophys. Res. 106, 3715.CrossRefGoogle Scholar
Birdsall, Ch. K. and Langdonm, A. B. 1985 Plasma Physics via Computer Simulation. New York: McGraw-Hill.Google Scholar
Bittencourt, J. A. 2004 Fundamentals of Plasma Physics. New York: Springer.CrossRefGoogle Scholar
Brown, J. C. 1971 Solar Phys. 18, 489.CrossRefGoogle Scholar
Browning, P. and Dalla, S. 2007 Mem. Soc. Astron. Italiana, 78, 255.Google Scholar
Buneman, O. 1993 Computer Space Plasma Physics (ed. Matsumoto, H. and Omura, Y). Tokyo: Terra Scientific, p. 305.Google Scholar
Craig, I. J. D., Fabling, R. B., Henton, S. M. and Rickard, G. J. 1995 Astrophys. J. Lett. 197, 455L.Google Scholar
Dalla, S. and Browning, P. 2005 Astron. Astrophys. 436, 1103.CrossRefGoogle Scholar
Drake, and Sahy, 2000 J. Plasma Phys. 190, 267.Google Scholar
Heerikhuisen, J., Litvinenko, Yu. E. and Craig, I. J. D. 2002 Astrophys. J. 566, 512.CrossRefGoogle Scholar
Litvinenko, Yu. E. 1996 Astrophys. J. 462, 997.CrossRefGoogle Scholar
Liu, W., Petrosian, V., Dennis, B. R. and Jaing, Y. W. 2008 Astrophys. J. 676, N1, 704.Google Scholar
Martens, P. C. H. and Young, A. 1990 Astrophys. J. Supp. Ser. 73, 333.CrossRefGoogle Scholar
Martin, R. F., Speiser, T. W. and Klamczynski, K. 1994 J. Geophys. Res. 99, 23623.CrossRefGoogle Scholar
Masuda, S., Kosugi, T., Hara, H., Tsuneta, S. and Ogawara, Y. 1994 Nature 371, 495.CrossRefGoogle Scholar
McClymont, A. N. and Craig, I. J. D. 1996 Astrophys. J. 466, 487.CrossRefGoogle Scholar
Michailovskij, A. B. 1975 Theory of Plasma Instabilities. Moscow: Atomizdat (in Russian).Google Scholar
Millan, R. M., Lin, R. P., Smith, D. M. and McCarthy, M. P. 2007 Geophys. Res. Lett. 34, 10, L10101.CrossRefGoogle Scholar
Nakariakov, V. M., Foullon, C., Verwichte, E. and Young, N. P. 2006 Astron. Astrophys. 452, 343.CrossRefGoogle Scholar
Poletto, G., Vaiana, G. S., Zombeck, M. V., Krieger, A. S. and Timothy, A. F. 1975 Solar Phys. 44, 83.CrossRefGoogle Scholar
Priest, E. and Forbes, T. 2000 Magnetic Reconnection: MHD Theory and Applications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Priest, E. R., Bungley, T. N. and Titov, V. S. 1997 Geophys. & Astrophys. Fluid Dyn. 84 (1–2), 127.CrossRefGoogle Scholar
Pritchett, P. L. and Coroniti, F. V. 2004 J. Geophys. Res. 109 (A1), CiteID A01220.Google Scholar
Shay, M. A. and Drake, J. F. 1998 Geophys. Res. Lett. 20, 3759.CrossRefGoogle Scholar
Siverskyi, T. and Zharkova, V. V. 2009 J. Plasma Phys. (submitted).Google Scholar
Somov, B. V. and Oreshina, A. V. 2000 Astron. Astrophys. 354, 703.Google Scholar
Somov, B. V. 2000 Cosmic Plasma Physics. Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
Speiser, T. W. 1965 J. Geophys. Res. 70, 4219.CrossRefGoogle Scholar
Sue, L. and Holman, G. D. 2003 Astrophys. J. 596, L251.CrossRefGoogle Scholar
Takakura, T., Kosugi, T., Sakao, T., Makishima, K., Inda-Koide, M. and Masuda, S. 1995 Publ. Astron. Soc. Japan 47, 355.Google Scholar
Tsiklauri, D. and Hiruki, T. 2007 Phys. Plasma 14, 112 905.CrossRefGoogle Scholar
Verbouncoeur, J. P., Langdon, A. B. and Gladd, N. T. 1995 Comput. Phys. Commun. 87, 199.CrossRefGoogle Scholar
Voitenko, Yu. M. 1998 Solar Phys. 182, 411.CrossRefGoogle Scholar
Wood, P. and Neukirch, T. 2005 Solar Phys. 226, 73.CrossRefGoogle Scholar
Zharkova, V. V. and Gordovskyy, M. 2004 Astrophys. J. 604, 884.CrossRefGoogle Scholar
Zharkova, V. V. and Gordovskyy, M. 2005a Mon. Not. R. Astron. Soc. 356, 1107.CrossRefGoogle Scholar
Zharkova, V. V. and Gordovskyy, M. 2005b Space Sci. Rev. 121, N1-4, 165.CrossRefGoogle Scholar
Zharkova, V. V. and Gordovskyy, M. 2005c Astron. Astrophys. 432, 1033.CrossRefGoogle Scholar