Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-29T03:55:10.876Z Has data issue: false hasContentIssue false

Effect of electron beam on the properties of electron-acoustic rogue waves

Published online by Cambridge University Press:  03 December 2014

E. K. El-Shewy*
Affiliation:
Department of Physics, Taibah University, Al-Madinah Al-Munawarrah, Kingdom of Saudi Arabia Theoretical Physics Group, Faculty of Science, Mansoura University, Mansoura, Egypt
S. A. Elwakil
Affiliation:
Theoretical Physics Group, Faculty of Science, Mansoura University, Mansoura, Egypt
A. M. El-Hanbaly
Affiliation:
Theoretical Physics Group, Faculty of Science, Mansoura University, Mansoura, Egypt
A. I. Kassem
Affiliation:
Theoretical Physics Group, Faculty of Science, Mansoura University, Mansoura, Egypt
*
Email address for correspondence: [email protected], [email protected]

Abstract

The properties of nonlinear electron-acoustic rogue waves have been investigated in an unmagnetized collisionless four-component plasma system consisting of a cold electron fluid, Maxwellian hot electrons, an electron beam and stationary ions. It is found that the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The dependence of rogue wave profiles and the associated electric field on the carrier wave number, normalized density of hot electron and electron beam, relative cold electron temperature and relative beam temperature are discussed. The results of the present investigation may be applicable in auroral zone plasma.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdelwahed, H. G. 2012 Astrophys. Space Sci. 341, 491500.Google Scholar
Akhmediev, N. and Ankiewicz, A. 1997 Solitons, Nonlinear Pulses and Beams, London: Chapman and Hall.Google Scholar
Akhmediev, N., Eleonskii, V. M. and Kulagin, N. E. 1987 Theor. Math. Phys. 72, 809.CrossRefGoogle Scholar
Akhmediev, N. and Korneev, V. I. 1986 Theor. Math. Phys. 69, 1089.CrossRefGoogle Scholar
Akhmediev, N., Soto-Crespo, J. M. and Ankiewicz, A. 2009 Phys. Rev. A 80, 043 818.Google Scholar
Amin, M. R., Morfill, G. E. and Shukla, P. K. 1998 Phys. Rev. E 58, 6517.Google Scholar
Ankiewicz, A., Devine, N. and Akhmediev, N. 2009 Phys. Lett. A 373, 3997.Google Scholar
Benjamin, T. B. and Feir, J. E. 1967 J. Fluid Mech. 27, 417.CrossRefGoogle Scholar
Berthomier, M., Pottelette, R., Malingre, M. and Khotyainsev, Y. 2000 Phys. Plasmas 7, 2987.Google Scholar
Berthomier, M., Pottelette, R., Malingre, M. and Treumann, R. A. 1999 Phys. Plasmas 6, 467.Google Scholar
Bespalov, V. I. and Talanov, V. I. 1966a Zh. Eksp. Teor. Fiz. Pis'ma Red. 3, 471.Google Scholar
Bespalov, V. I. and Talanov, V. I. 1966b JETP Lett. 3 307.Google Scholar
Bludov, Yu. V., Konotop, V. V. and Akhmediev, N. 2009 Phys. Rev. A 80, 033 610.CrossRefGoogle Scholar
Borhanian, J. and Shahmansouri, M. 2012 Astrophys. Space Sci. 342, 401.CrossRefGoogle Scholar
Cattell, C.et al. 1998 Geophys. Res. Lett. 25, 20532056.Google Scholar
Drazin, P. G. and Johnson, R. S. 1989 Solitons, Cambridge: Cambridge University Press.Google Scholar
Dubouloz, N., Treumann, R. A., Pottelette, R. and Malingre, M. 1993 J. Geophys. Res. 98, 17 41517 422.Google Scholar
Dutta, M., Ghosh, S. and Chakrabarti, N. 2012 Phys. Rev. E 86, 066 408.Google Scholar
Dutta, M., Ghosh, S., Roychoudhury, R., Khan, M. and Chakrabarti, N. 2013 Phys. Plasmas 20, 042 301.Google Scholar
Eliasson, B. and Shukla, P. K. 2010 Phys. Rev. Lett. 105, 014 501.Google Scholar
El-Taibany, W. F. 2005 J. Geophys. Res. A 110, 01 213.Google Scholar
Elwakil, S. A., El-hanbaly, A. M., El-Shewy, E. K. and El-Kamash, I. S. 2014 Astrophys. Space Sci. 349, 197203.Google Scholar
Elwakil, S. A., El-Shewy, E. K. and Zahran, M. A. 2007 Phys. Scr. 75, 803.CrossRefGoogle Scholar
Ergun, R. E., Carlson, C. W., Muschietti, L., Roth, I. and McFadden, J. P. 1999 Nonlin. Process. Geophys. 6, 187194.Google Scholar
Fedele, R. 2002 Phys. Scr. 65, 502.Google Scholar
Ganshin, A. N., Efimov, V. B., Kolmakov, G. V., Mezhov–Deglin, L. P. and McClintock, P. V. E. 2008 Phys. Rev. Lett. 101, 065 303.CrossRefGoogle Scholar
Ikezawa, S. and Nakamura, Y. 1981 J. Phys. Soc. Japan 50, 962.Google Scholar
Kharif, C., Pelinovsky, E. and Slunyaev, A. 2009 Rogue Waves in the Ocean, Berlin: Springer-Verlag.Google Scholar
Kibler, B., Fatome, J., Finot, C., Millot, G., Dias, F., Genty, G., Akhmediev, N. and Dudley, J. M. 2010 Nature Phys. 6, 790.CrossRefGoogle Scholar
Kourakis, I. and Shukla, P. K. 2004 Proc. Int. Conf. on Plasma Physics 2004, Nice (France), contribution P3-044.Google Scholar
Ma, Y. C. 1979 Stud. Appl. Math. 60, 43.Google Scholar
Mace, R. L., Baboolal, S., Bharuthram, R. and Hellberg, M. A. 1991 J. Plasma Phys. 45, 323.Google Scholar
Mace, R. L. and Hellberg, M. A. 1990a J. Plasma Phys. 43, 239Google Scholar
Mace, R. L., Amery, G. and Hellberg, M. A. 1999b Phys. Plasmas 6, 44.Google Scholar
Miyake, T., Omura, Y. and Matsumoto, H. 2000 J. Geophys. Res. 105, 23 23923 249.CrossRefGoogle Scholar
Montina, A., Bortolozzo, U., Residori, S. and Arecchi, F. T. 2009 Phys. Rev. Lett. 103, 173 901.Google Scholar
Moslem, W. M., Sabry, R., El-Labany, S. K. and Shukla, P. K. 2011a Phys. Rev. E 84, 066 402.CrossRefGoogle Scholar
Moslem, W. M., Shukla, P. K. and Eliasson, B. 2011b Europhys. Lett. 96, 25 002.CrossRefGoogle Scholar
Onorato, M., Proment, D. and Toffoli, A. 2011 Phys. Rev. Lett. 107, 184 502.Google Scholar
Peregrine, D. H. 1983 J. Aust. Math. Soc. Ser. B, Appl. Math. 25, 16.Google Scholar
Pottelette, R., Ergun, R. E., Truemann, R. A., Berthomier, M., Carlson, C. W., McFadden, J. P. and Roth, I. 1999 Geophys. Res. Lett. 26, 26292632.Google Scholar
Riosa, L. A. and Galvão, R. M. O. 2011 Phys. Plasmas 18, 022 311.Google Scholar
Sabry, R., Moslem, W. M. and Shukla, P. K. 2012 Phys. Rev. E 86, 036 408.Google Scholar
Sahu, B., Poria, S. and Roychoudhury, R. 2012 Astrophys. Space Sci. 341, 567.Google Scholar
Shats, M., Punzmann, H. and Xia, H. 2010 Phys. Rev. Lett. 104, 104 503.Google Scholar
Singh, S. V. and Lakhina, G. S. 2001 Plant. Space Sci. 49, 107.CrossRefGoogle Scholar
Singh, S. V., Reddy, R. V. and Lakhina, G. S. 2001 Adv. Space. Res. 28, 16431648.Google Scholar
Solli, D. R., Ropers, C., Koonath, P. and Jalali, B. 2007 Nature (London) 450, 1054.Google Scholar
Stenflo, L. and Marklund, M. 2010 J. Plasma Phys. 76, 293.Google Scholar
Sulem, C. and Sulem, P. L. 1999 The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse (Applied Mathematical Sciences, 139) New York: Springer.Google Scholar
Taniuti, T. 1974 Theor. Phys. Rev. Lett. 55, 11 974.Google Scholar
Tokar, R. L. and Gary, S. P. 1984a Geophys. Res. Lett. 11, 1180Google Scholar
Gary, S. P. and Tokar, R. L. 1985b Phys. Fluids 28, 2439.Google Scholar
Voronovich, V. V., Shrira, V. I. and Thomas, G. 2008 J. Fluid Mech. 604, 263.Google Scholar
Washimi, H. and Taniuti, T. 1966 J. Phys. Rev. Lett. 17, 996.Google Scholar
Yan, Z. 2010 Commun. Theor. Phys. 54, 947.Google Scholar