Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T11:15:27.711Z Has data issue: false hasContentIssue false

Dust-acoustic shock waves in a plasma system with opposite polarity dust fluids and trapped ions

Published online by Cambridge University Press:  23 December 2019

R. A. Sumi*
Affiliation:
Department of Physics, Begum Rokeya University, Rangpur, Bangladesh
I. Tasnim
Affiliation:
Department of Physics, Begum Rokeya University, Rangpur, Bangladesh
M. G. M. Anowar
Affiliation:
Department of Physics, Begum Rokeya University, Rangpur, Bangladesh
A. A. Mamun
Affiliation:
Department of Physics (also: Wazed Miah Science Research Centre), Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
*
Email address for correspondence: [email protected]

Abstract

The propagation of dust-acoustic (DA) shock waves (SWs) is studied in a four-component dusty plasma system containing viscous dust fluids of opposite polarity, Schamel distributed ions and Boltzmann distributed electrons. The reductive perturbation method is employed to derive a modified Burgers equation which gives rise to the DA shock waves with stronger nonlinearity. The viscous force acting in the dust fluids is identified as a source of dissipation, and is responsible for the formation of the DA shock waves. The basic characteristics (viz., speed, amplitude, width) of the DA shock waves are found to be significantly modified by the combined effects of opposite polarity dust fluids and trapped ions. The applications of this investigation in different space plasma environments and laboratory devices are pinpointed.

Type
Research Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adhikary, N. C., Deka, M. K., Dev, A. N. & Sarma, J. 2014 Modified Korteweg–de Vries equation in a negative ion rich hot adiabatic dusty plasma with non-thermal ion and trapped electron. Phys. Plasmas 21, 083703.Google Scholar
Adhikary, N. C., Misra, A. P., Deka, M. K. & Dev, A. N. 2017 Nonlinear dust-acoustic solitary waves and shocks in dusty plasmas with a pair of trapped ions. Phys. Plasmas 24, 073703.Google Scholar
Andersson, L., Ergun, R. E., Newman, D. L., McFadden, J. P., Carlson, C. W. & Su, Y.-J. 2002 Characteristics of parallel electric fields in the downward current region of the aurora. Phys. Plasmas 9, 36003609.Google Scholar
Barkan, A., Merlino, R. L. & D’Angelo, N. 1995 Laboratory observation of the dust acoustic wave mode. Phys. Plasmas 2, 35633565.Google Scholar
Chow, V. W., Mendis, D. A. & Rosenberg, M. 1993 Role of grain size and particle velocity distribution in secondary electron emission in space plasmas. J. Geophys. Res. 98, 1906519076.Google Scholar
D’Angelo, N. 2001 Dust-acoustic waves in plasmas with opposite polarity grains. Planet. Space Sci. 49, 12511256.Google Scholar
D’Angelo, N. 2002 Electrostatic dust-cyclotron waves in plasmas with opposite polarity grains. Planet. Space Sci. 50, 375378.Google Scholar
Dev, A. N., Sharma, J. & Deka, M. K. 2015a Dust acoustic shock waves in arbitrarily charged dusty plasma with low and high temperature non-thermal ions. Can. J. Phys. 93, 10301038.Google Scholar
Dev, A. N., Sharma, J., Deka, M. K. & Adhikary, N. C. 2015b Dust acoustic shock waves with non-thermal and vortex-like ions in dusty plasma. Plasma Sci. Technol. 17, 268275.Google Scholar
El-Hanbaly, A. M., El-Shewy, E. K., Sallah, M. & Darweesh, H. F. 2015 Linear and nonlinear analysis of dust acoustic waves in dissipative space dusty plasmas with trapped ions. Theor. Appl. Phys. 9, 167173.Google Scholar
Eliasson, B. & Shukla, P. K. 2004 Dust acoustic shock waves. Phys. Rev. E 69, 067401.Google Scholar
Ergun, R. E., Andersson, L., Main, D. H. & Su, Y.-J. 2002 Parallel electric fields in the upward current region of the aurora: indirect and direct observations. Phys. Plasmas 9, 36853694.Google Scholar
Havnes, O., Troim, J., Blix, T., Mortensen, W., Naesheim, L. I., Thrane, E. & Tonnesen, T. 1996 First detection of charged dust particles in the Earth’s mesosphere. J. Geophys. Res. 101, 1083910847.Google Scholar
Heinrich, J., Kim, S. H. & Merlino, R. L. 2009 Laboratory observations of self-excited dust acoustic shocks. Phys. Rev. Lett. 103, 115002.Google Scholar
Horányi, M., Morfill, G. & Grun, E. 1993 Mechanism for acceleration and ejection of dust grains from Jupiter’s magnetosphere. Nature 363, 144146.Google Scholar
Mamun, A. A. 2008 Electrostatic solitary structures in a dusty plasma with dust of opposite polarity. Phys. Rev. E. 77, 026406.Google Scholar
Mamun, A. A. & Cairns, R. A. 2009 Dust-acoustic shock waves due to strong correlation among arbitrarily charged dust. Phys. Rev. E 79, 055401.Google Scholar
Mamun, A. A. & Schlickeiser, R. 2015 Solitary waves in a self-gravitating opposite polarity dust-plasma medium. Phys. Plasmas 22, 103702.Google Scholar
Mamun, A. A. & Schlickeiser, R. 2016 Shock structures in a strongly coupled self-gravitating opposite-polarity dust plasma. Phys. Plasmas 23, 034502.Google Scholar
Mamun, A. A. & Shukla, P. K. 2002 Solitary potentials in cometary dusty plasmas. Geophys. Res. Lett. 29 (17), 14.Google Scholar
Mamun, A. A. & Shukla, P. K. 2010 Nonplanar dust ion-acoustic solitary and shock waves in a dusty plasma with electrons following a vortex-like distribution. Phys. Lett. A 374, 472475.Google Scholar
Mendis, D. A. & Rosenberg, M. 1994 Cosmic dusty plasma. Annu. Rev. Astron. Astrophys. 32, 419463.Google Scholar
Rao, N. N., Shukla, P. K. & Yu, M. Y. 1990 Dust-acoustic waves in dusty plasmas. Planet. Space Sci. 38, 543546.Google Scholar
Sayed, F. & Mamun, A. A. 2007 Solitary potential in a four-component dusty plasma. Phys. Plasmas 14, 014501.Google Scholar
Schamel, H. 1972 Stationary solitary, snoidal and sinusoidal ion acoustic waves. Plasma Phys. 14, 905924.Google Scholar
Schamel, H. 1973 A modified Korteweg–de Vries equation for ion acoustic waves due to resonant electrons. J. Plasma Phys. 9, 377387.Google Scholar
Schamel, H. 1986 Electron holes, ion holes and double layers: electrostatic phase space structures in theory and experiment. Phys. Rep. 140, 161191.Google Scholar
Shukla, P. K. & Eliasson, B. 2012 Nonlinear dynamics of large-amplitude dust acoustic shocks and solitary pulses in dusty plasmas. Phys. Rev. E 86, 046402.Google Scholar
Shukla, P. K. & Rosenberg, M. 2006 Streaming instability in opposite polarity dust plasmas. Phys. Scr. 73, 196197.Google Scholar
Trigwell, S., Grable, N., Yurteri, C. U., Sharma, R. & Mazumder, M. K. 2003 Effects of surface properties on the tribocharging characteristics of polymer powder as applied to industrial processes. IEEE Trans. Ind. Applics. 39, 7986.Google Scholar
Verheest, F. 2009 Nonlinear acoustic waves in nonthermal plasmas with negative and positive dust. Phys. Plasmas 16, 013704-1-013704-9.Google Scholar
Winske, D., Gary, S. P., Jones, M. E., Rosenberg, M., Chow, V. W. & Mendis, D. A. 1995 Ion heating in a dusty plasma due to the dust/ion acoustic instability. Geophys. Res. Lett. 22, 20692072.Google Scholar
Zhao, H., Castle, G. S. P., Inculet, I. I. & Bailey, A. G. 2003 Bipolar charging of poly-disperse polymer powders in fluidized beds. IEEE Trans. Ind. Applics. 39, 612618.Google Scholar