Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T23:33:57.669Z Has data issue: false hasContentIssue false

Dust shear Alfvén solitary structures in an opposite polarity dust medium

Published online by Cambridge University Press:  18 October 2013

A. A. MAMUN*
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh ([email protected])

Abstract

The basic features of dust shear Alfvén (DSA) solitary structures formed in an opposite polarity dust medium (containing positively and negatively charged dust fluids) have been investigated by using the reductive perturbation method. The derivative nonlinear Shrödinger equation and its stationary solitary wave solution are obtained for this investigation. It is shown that the opposite polarity dust medium under consideration supports the compressive DSA solitary structures having new features with new time and length scales. The implications of our results in space environments and laboratory devices are briefly discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, F. S., Ali, M. A., Ali, R. A. and Lncullet, I. I. 1998 J. Electrost. 45, 139.Google Scholar
Chow, V. W., Mendis, D. A. and Rosenberg, M. 1993 J. Geophys. Res. 98, 19065.CrossRefGoogle Scholar
D'Angelo, N. 2002 Planet. Space Sci. 50, 375.CrossRefGoogle Scholar
Ellis, T. A. and Neff, J. S. 1991 Icarus 91, 280.CrossRefGoogle Scholar
Farrell, V. M.et al. 2004 J. Geophys. Res. 65, 3504.Google Scholar
Havnes, O., Trøim, J., Blix, T., Mortensen, W., Næsheim, L. I., Thrane, E. and Tønnesen, T. 1996 J. Geophys. Res. 101, 10839.CrossRefGoogle Scholar
Horányi, M. 1996 Annu. Rev. Astron. Astrophys. 34, 383.CrossRefGoogle Scholar
Horányi, M., Morfill, G. E. and Grün, E. 1993 Nature 363, 144.CrossRefGoogle Scholar
Ichikawa, Y. H. 1979 Phys. Scr. 20, 296.CrossRefGoogle Scholar
Lacks, D. J. and Levandovsky, A. 2007 J. Electrost. 65, 107.CrossRefGoogle Scholar
Mamun, A. A. 1999 Phys. Scr. 60, 365.CrossRefGoogle Scholar
Mamun, A. A. 2008a Phys. Rev. E 77, 026406.Google Scholar
Mamun, A. A. 2008b Phys. Lett. A 372, 686.CrossRefGoogle Scholar
Mamun, A. A. 2011 Phys. Lett. A 375, 4029.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2002 Geophys. Res. Lett. 29, 1870.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2003 Phys. Plasmas 10, 4341.CrossRefGoogle Scholar
Merrison, J., Jensen, J., Kinch, K., Mugfor, R. and Nornberg, P. 2004 Planet. Space Sci. 52, 279.CrossRefGoogle Scholar
Shukla, P. K. 2001 Phys. Plasmas 8, 1791.CrossRefGoogle Scholar
Shukla, P. K. 2004 Phys. Plasmas 11, 3676.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2009 Rev. Mod. Phys. 81, 25.CrossRefGoogle Scholar
Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol: IOP Publishing Ltd., pp. 827.CrossRefGoogle Scholar
Shukla, P. K. and Rosenberg, M. 2006 Phys. Scr. 73, 196.CrossRefGoogle Scholar
Stow, C. D. 1969 Rep. Prog. Phys. 32, 1.CrossRefGoogle Scholar
Trigwell, S., Grable, N., Yurreri, C. U., Sharma, R. and Mazumder, M. K. 2003 IEEE Trans. Ind. Appl. 39, 79.CrossRefGoogle Scholar
Verheest, F. 1995 Phys. Scr. T63, 99.CrossRefGoogle Scholar
Verheest, F. 2009 Phys. Plasmas 16, 013704.CrossRefGoogle Scholar
Verheest, F. and Buti, B. 1992 J. Plasma Phys. 47, 15.CrossRefGoogle Scholar
Zhao, H., Castle, G. S. P., Lnculet, I. I. and Bailey, A. G. 2003 IEEE Trans. Ind. Appl. 39, 612.CrossRefGoogle Scholar