Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T11:24:12.591Z Has data issue: false hasContentIssue false

Dust ion-acoustic solitary structures in non-thermal dusty plasma

Published online by Cambridge University Press:  08 December 2011

ANIMESH DAS
Affiliation:
Department of Mathematics, Jadavpur University, Kolkata 700 032, India ([email protected])
ANUP BANDYOPADHYAY
Affiliation:
Department of Mathematics, Jadavpur University, Kolkata 700 032, India ([email protected])
K. P. DAS
Affiliation:
Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700 009, India

Abstract

Dust ion-acoustic solitary structures have been investigated in an unmagnetized non-thermal plasma consisting of negatively charged dust grains, adiabatic positive ions, and non-thermal electrons. Whenever the non-thermal parameter exceeds a critical value, the present system supports negative potential double layer solution. However, this double layer solution is unable to restrict the occurrence of negative potential solitary waves of the present system. As a result, the occurrence of one type of negative potential solitary wave is restricted by Mc < M < MD, whereas the second type of solitary wave exists for all M > MD, where Mc is the lower bound of the Mach number M and MD (> Mc) is the Mach number corresponding to a negative potential double layer. A finite jump between the amplitudes of negative potential solitary waves at M = MD − ϵ1 and M = MD + ϵ2 has been observed, where 0 < ϵ1 < MDMc and ϵ2 > 0. Depending on the analytical theory presented in this paper, a numerical scheme has been provided to find the value of the Mach number at which double layer solution exists, and also the amplitude of that double layer. Although the occurrence of coexistence of solitary structures of both polarities is restricted by Mc < MMmax, only negative potential solitary wave still exists for all M > Mmax, where Mmax is the upper bound of M for the existence of positive potential solitary waves only. Qualitatively different compositional parameter spaces showing the nature of existing solitary structures of the energy integral have been found. These solution spaces are capable of producing new results and physical ideas for the formation of solitary structures whenever one can move the solution spaces through the family of curves parallel to the curve M = Mc.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asbridge, J. R., Bame, S. J. and Strong, I. B. 1968 Outward flow of protons from the earth's bow shock. J. Geophys. Res. 73, 57775782.CrossRefGoogle Scholar
Baluku, T. K., Hellberg, M. A., Kourakis, I. and Saini, N. S. 2010a Dust ion acoustic solitons in a plasma with kappa-distributed electrons. Phys. Plasmas 17, 053702-1–053702-11.CrossRefGoogle Scholar
Baluku, T. K., Hellberg, M. A. and Verheest, F. 2010b New light on ion acoustic solitary waves in a plasma with two-temperature electrons. EPL 91, 15001-p1–15001-p6.CrossRefGoogle Scholar
Barkan, A., D'Angelo, N. and Marlino, R. L. 1996 Experiments on ion-acoustic waves in dusty plasmas. Planet. Space Sci. 44, 239242.CrossRefGoogle Scholar
Barkan, A., Marlino, R. L. and D'Angelo, N. 1995 Laboratory observation of the dust-acoustic wave mode. Phys. Plasmas 2, 35633565.CrossRefGoogle Scholar
Berbri, A. and Tribeche, M. 2009 Weakly nonlinear dust ion-acoustic shock waves in a dusty plasma with nonthermal electrons. Phys. Plasmas 16, 053701-1–053701-5.Google Scholar
Bharuthram, R. and Shukla, P. K. 1992 Large amplitude ion-acoustic solitons in a dusty plasma. Planet. Space Sci. 40, 973977.CrossRefGoogle Scholar
Cairns, R. A., Mamun, A. A., Bingham, R., Böstrom, R., Dendy, R. O., Nairn, C. M. C. and Shukla, P. K. 1995 Electrostatic solitary structures in non-thermal plasmas. Geophys. Res. Lett. 22, 27092712.CrossRefGoogle Scholar
Das, A., Bandyopadhyay, A. and Das, K. P. 2009 Arbitrary amplitude dust acoustic solitary waves and double layers in nonthermal plasma including the effect of dust temperature. Phys. Plasmas 16, 073703-1–073703-10.CrossRefGoogle Scholar
Das, A., Bandyopadhyay, A. and Das, K. P. 2010 Large amplitude dust acoustic solitary waves and double layers in positively charged warm dusty plasma with nonthermal electrons. Phys. Plasmas 17, 014503-1–014503-4.CrossRefGoogle Scholar
Djebli, M. and Marif, H. 2009 Large amplitude double layers in a positively charged dusty plasma with nonthermal electrons. Phys. Plasmas 16, 063708-1–063708-8.CrossRefGoogle Scholar
Feldman, W. C., Anderson, R. C., Bame, S. J., Gary, S. P., Gosling, J. T., McComas, D. J., Thomsen, M. F., Paschmann, G. and Hoppe, M. M. 1983 Electron velocity distributions near the earths bow shock. J. Geophys. Res. 88, 96110.CrossRefGoogle Scholar
Futaana, Y., Machida, S., Saito, Y., Matsuoka, A. and Hayakawa, H. 2003 Moon-related nonthermal ions observed by Nozomi: species, sources, and generation mechanisms. J. Geophys. Res. 108, 10251035.CrossRefGoogle Scholar
Lundin, R., Zakharov, A., Pellinen, R., Borg, H., Hultqvist, B., Pissarenko, N., Dubinin, E. M., Barabash, S. W., Liede, I. and Koskinen, H. 1989 First measurements of the ionospheric plasma escape from Mars. Nature (London) 341, 609612.CrossRefGoogle Scholar
Maharaj, S. K., Pillay, S. R., Bharuthram, R., Reddy, R. V., Singh, S. V. and Lakhina, G. S. 2006 Arbitrary amplitude dust-acoustic double layers in a non-thermal plasma. J. Plasma Phys. 72, 4358.CrossRefGoogle Scholar
Maharaj, S. K., Pillay, S. R., Bharuthram, R., Singh, S. V. and Lakhina, G. S. 2004 The effect of dust grain temperature and dust streaming on electrostatic solitary structures in a non-thermal plasma. Phys. Scripta T113, 135140.CrossRefGoogle Scholar
Mamun, A. A., Cairns, R. A. and Shukla, P. K. 1996a Solitary potentials in dusty plasmas. Phys. Plasmas 3, 702704.CrossRefGoogle Scholar
Mamun, A. A., Cairns, R. A. and Shukla, P. K. 1996b Effects of vortex-like and non-thermal ion distributions on non-linear dust-acoustic waves. Phys. Plasmas 3, 26102614.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2002a Cylindrical and spherical dust ionacoustic solitary waves. Phys. Plasmas 9, 14681470.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2002b Electrostatic solitary and shock structures in dusty plasmas. Phys. Scripta T98, 107114.CrossRefGoogle Scholar
Mendoza-Briceño, C. A., Russel, S. M. and Mamun, A. A. 2000 Large amplitude electrostatic solitary structures in a hot non-thermal dusty plasma. Planet. Space Sci. 48, 599608.CrossRefGoogle Scholar
Merlino, R. L., Barkan, A., Thompson, C. and D'Angelo, N. 1998 Laboratory studies of waves and instabilities in dusty plasmas. Phys. Plasmas 5, 16071614.CrossRefGoogle Scholar
Nakamura, Y. and Sarma, A. 2001 Observation of ion-acoustic solitary waves in a dusty plasma. Phys. Plasmas 8, 39213926.CrossRefGoogle Scholar
Pieper, J. B. and Goree, J. 1996 Dispersion of plasma dust acoustic waves in the strong-coupling regime. Phys. Rev. Lett. 77, 31373140.CrossRefGoogle ScholarPubMed
Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Dust-acoustic waves in dusty plasmas. Planet. Space Sci. 38, 543546.CrossRefGoogle Scholar
Sayed, F. and Mamun, A. A. 2008 Effects of ion-fluid temperature on dust-ion-acoustic solitons. Pramana 70, 527534.CrossRefGoogle Scholar
Shukla, P. K. 2001 A survey of dusty plasma physics. Phys. Plasmas 8, 17911803.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2009 Colloquium: fundamentals of dust-plasma interactions. Rev. Mod. Phys. 81, 2544.CrossRefGoogle Scholar
Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol, UK: IoP.CrossRefGoogle Scholar
Shukla, P. K. and Mamun, A. A. 2003 Solitons, shocks and vortices in dusty plasmas. NJP 5, 17.1–17.37.CrossRefGoogle Scholar
Shukla, P. K. and Rosenberg, M. 1999 Boundary effects on dust-ion-acoustic and dust-acoustic waves in collisional dusty plasmas. Phys. Plasmas 6, 10381040.CrossRefGoogle Scholar
Shukla, P. K. and Silin, V. P. 1992 Dust ion-acoustic wave. Phys. Scripta 45, 508 (1 pp).CrossRefGoogle Scholar
Verheest, F. 1992 Nonlinear dust-acoustic waves in multispecies dusty plasmas. Planet. Space Sci. 40, 16.CrossRefGoogle Scholar
Verheest, F. 2000 Waves in Dusty Space Plasmas. Dordrecht, Netherlands: Kluwer Academic.CrossRefGoogle Scholar
Verheest, F. 2009 Nonlinear acoustic waves in nonthermal plasmas with negative and positive dust. Phys. Plasmas 16, 013704-1–013704-9.CrossRefGoogle Scholar
Verheest, F. 2010 Nonlinear acoustic waves in nonthermal dusty or pair plasmas. Phys. Plasmas 17, 062302-1–062302-10.CrossRefGoogle Scholar
Verheest, F., Cattaert, T. and Hellberg, M. A. 2005 Ion- and dust-acoustic solitons in dusty plasmas: existence conditions for positive and negative potential solutions. Phys. Plasmas 12, 082308-1–082308-8.CrossRefGoogle Scholar
Verheest, F. and Hellberg, M. A. 2010 Nonthermal effects on existence domains for dust-acoustic solitary structures in plasmas with two-temperature ions. Phys. Plasmas 17, 023701-1–023701-10.CrossRefGoogle Scholar
Verheest, F. and Pillay, S. R. 2008 Large amplitude dust-acoustic solitary waves and double layers in nonthermal plasmas. Phys. Plasmas 15, 013703-1–013703-11.CrossRefGoogle Scholar