Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T08:41:57.839Z Has data issue: false hasContentIssue false

Dust acoustic shock waves in dusty plasma of opposite polarity with non-extensive electron and ion distributions

Published online by Cambridge University Press:  25 March 2014

S. K. Zaghbeer
Affiliation:
Faculty of Science for Girls, Al-Azhar University, Nasr City, Cairo, Egypt
H. H. Salah
Affiliation:
Faculty of Science for Girls, Al-Azhar University, Nasr City, Cairo, Egypt
N. H. Sheta
Affiliation:
Faculty of Science for Girls, Al-Azhar University, Nasr City, Cairo, Egypt
E. K. El-Shewy
Affiliation:
Theoretical Physics Group, Faculty of Science, Mansoura University, Mansoura, Egypt
A. Elgarayhi*
Affiliation:
Theoretical Physics Group, Faculty of Science, Mansoura University, Mansoura, Egypt
*
Email address for correspondence: [email protected]

Abstract

A theoretical investigation has been made of obliquely propagating nonlinear electrostatic shock structures. The reductive perturbation method has been used to derive the Korteweg-de Vries-Burger (KdV-Burger) equation for dust acoustic shock waves in a homogeneous system of a magnetized collisionless plasma comprising a four-component dusty plasma with massive, micron-sized, positively, negatively dust grains and non-extensive electrons and ions. The effect of dust viscosity coefficients of charged dusty plasma of opposite polarity and the non-extensive parameters of electrons and ions have been studied. The behavior of the oscillatory and monotonic shock waves in dusty plasma has been investigated. It has been found that the presence of non-extensive parameters significantly modified the basic properties of shock structures in space environments.

Type
Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ait Gougam, L. and Tribeche, M. 2011 Astrophys. Space Sci. 331, 181.Google Scholar
Anowar, M. G. M., Rahman, M. S. and Mamun, A. A. 2009 Phys. Plasmas 16, 053704.Google Scholar
Barkan, A., D'Angelo, N. and Marlino, R. L. 1996 Planet. Space Sci. 44, 239.Google Scholar
Chow, V. W., Mendis, D. A. and Rosenberg, M. 1993 J. Geophys. Res. (Space Phys.) 98, 19065.CrossRefGoogle Scholar
Fortov, V. E., Nefedov, A. P., Vaulina, O. S, Lipaev, A. M. and Molotkov, V. I. 1998 Exp. Theor. Phys. 87, 1087.CrossRefGoogle Scholar
Ghosh, U. N., Ghosh, D. K., Chatterjee, P. and Sahu, B. 2012 Astrophys. Space Sci. 342, 449456.Google Scholar
Havens, O., Brattli, A., Aslaksen, T., Singer, W., Latteck, R., Blix, T., Thrane, E. and Trøim, J. 2001 Geophys. Res. Lett. 28, 1419.Google Scholar
Homann, A., Melzer, A., Peters, S. and Piel, A. 1997 Phys. Rev. E 56, 7138.Google Scholar
Horanyi, M. A. and Mendis, D. J. 1986 Geophys. Res. 91, 355.Google Scholar
Horanyi, M., Morfill, G. E. and Grun, E. 1993 Nature 363, 144.Google Scholar
Klumov, B. A., Popel, S. I. and Bingham, R. 2000 JETP Lett. 72, 364.Google Scholar
Mamun, A. A. 2008 Phys. Rev. E 77, 026406.Google Scholar
Mamun, A. A. 2011 Phys. Lett. A 375, 4029.CrossRefGoogle Scholar
Mamun, A. A. and Mannan, A. 2011 JETP Letters 94, 356.Google Scholar
Mamun, A. A. and Shukla, P. K. 2002 Geophys. Res. Lett. 29, 1870.CrossRefGoogle Scholar
Masood, W., Rizvi, H., Jehan, N. and Siddiq, M. 2011 Astrophys. Space Sci. 335, 405413.Google Scholar
Mendis, D. A. and Rosenberg, M. 1994 Annu. Rev. Astron. Astrophys. 32, 419.Google Scholar
Merlino, R. L., Barkan, A., Thomson, C. and D'Angelo, N. 1998 Phys. Plasmas 5, 1607.Google Scholar
Nakamura, Y., Bailung, H. and Shukla, P. K. 1999 Phys. Rev. Lett. 83, 16021605.Google Scholar
Nakamura, Y. and Sarma, A. 2001 Phys. Plasmas 8 (6), 39213926.CrossRefGoogle Scholar
Popel, S. I., Gisko, A. A., Golub, A. P, Losseva, T. V., Bingham, R. and Shukla, P. K. 2000 Phys. Plasmas 7 (6), 24102416.Google Scholar
Rahman, A., Mamun, A. A. and Khurshed Alam, S. M. (2008) Astrophys. Space Sci. 315, 243.Google Scholar
Rahman, A., Sayed, F. and Mamun, A. A. 2007 Phys. Plasmas 14, 034503.Google Scholar
Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Planet. Space Sci. 38, 543.Google Scholar
Tasnim, S., Mannan, A. and Mamun, A. A. 2012 Astrophys. Space Sci. 337, 261.Google Scholar
Tribeche, M. and Merriche, A. 2011 Phys. Plasmas 18, 034502.Google Scholar
Tsallis, C. 1988 J. Stat. Phys. 52, 479.CrossRefGoogle Scholar
Sahu, B. and Tribeche, M. 2012a Astrophys. Space Sci. 338, 259.Google Scholar
Sahu, B. and Tribeche, M. 2012b Astrophys. Space Sci. 341, 573.CrossRefGoogle Scholar
Sayed, F. and Mamun, A. A. 2007 Phys. Plasmas 14, 014501.Google Scholar
Schamel, H. 1982 Phys. Scr. T2/1, 228. doi:10.1088/0031-8949/1982/T2A/030.Google Scholar
Shahmansouri, M. and Tribeche, M. 2012 Astrophys. Space Sci. 342, 8792.Google Scholar
Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol, UK: Institute of Physics.Google Scholar
Singh, S. V. and Rao, N. N. 1998 J. Plasma Physics 60 (3), 541550.CrossRefGoogle Scholar
Smiley, B., Robertson, S., Horányi, M., Blix, T., Rapp, M., Latteck, R. and Gumbel, J. 2003 J. Geophys Res. 108, doi:10.1029/2002JD002425.Google Scholar
Whipple, E. C. 1981 Rep. Prog. Phys. 44, 1197.Google Scholar
Xue, J. K. and Zhang, L. P. 2007 Chaos Solitons Fractals 32, 592.CrossRefGoogle Scholar