Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T08:20:37.660Z Has data issue: false hasContentIssue false

Drift wave instability in a radially bounded dusty magnetoplasma with parallel ion velocity shear

Published online by Cambridge University Press:  17 July 2012

P. K. SHUKLA
Affiliation:
International Centre for Advanced Studies in Physical Sciences & Institute for Theoretical Physics, Faculty of Physics & Astronomy, Ruhr University Bochum, D-44780 Bochum, Germany Department of Mechanical and Aerospace Engineering & Center for Energy Research, University of California San Diego, La Jolla, CA 92093, USA ([email protected])
M. ROSENBERG
Affiliation:
Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA ([email protected])

Abstract

Properties of the coupled dust ion-acoustic drift wave instability in a radially bounded dusty magnetoplasma with an equilibrium sheared parallel ion (SPI) flow are investigated. By using the two-fluid model for the electrons and ions, a wave equation for the low-frequency coupled dust ion-acoustic drift waves in a bounded plasma with stationary charged dust grains is derived. The wave equation admits a linear dispersion relation, which exhibits that the radial boundary affects the growth rate of the coupled ion-acoustic drift wave instability which is excited by the SPI flow. The results should be relevant to dusty magnetoplasma experiments with an SPI flow.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. and Stegun, I. A. (eds.) 1964 Handbook of Mathematical Functions. New York: Dover.Google Scholar
Basu, B. and Coppi, B. 1988 Geophys. Res. Lett. 15, 417.CrossRefGoogle Scholar
Basu, B. and Coppi, B. 1989 J. Geophys. Res. 94. 5316.Google Scholar
Bharuthram, R. and Shukla, P. K. 1992 Planet. Space Sci. 40, 647.CrossRefGoogle Scholar
Coppi, B. 2002 Nucl. Fusion 42 (1); doi:10.1088/0029-5515/42/1/301.CrossRefGoogle Scholar
D'Angelo, N. 1965 Phys. Fluids 8, 1748.CrossRefGoogle Scholar
D'Angelo, N. and Song, B. 1990 Planet. Space Sci. 38, 1577.CrossRefGoogle Scholar
Ganguli, S. B. 1996 Rev. Geophys. 34, 311.CrossRefGoogle Scholar
Gavrishchaka, V.V.et al. 1999 J. Geophys. Res. 104, 12683; 2000 Phys. Rev. Lett. 85, 4285.CrossRefGoogle Scholar
Kadomtsev, B. B. 1965 Plasma Turbulence. New York: Academic.Google Scholar
Krasheninnikov, S. I., Smirnov, R. and Rudakov, D. L. 2011 Plasma Phys. Control. Fusion 53, 083001.CrossRefGoogle Scholar
Luo, Q. Z., D'Angelo, N. and Merlino, R. L. 2001 Phys. Plasmas 8, 31.CrossRefGoogle Scholar
Migliuolo, S., 1984 J. Geophys. Res. 89, 27.CrossRefGoogle Scholar
Shukla, P. K., Birk, G. T. and Bingham, R. 1995 Geophys. Res. Lett. 22, 671.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2009 Rev. Mod. Phys. 81, 25.CrossRefGoogle Scholar
Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol, UK: Institute of Physics.CrossRefGoogle Scholar
Shukla, P. K. and Rosenberg, M. 1999 Phys. Plasmas 6, 1038.CrossRefGoogle Scholar
Shukla, P. K. and Silin, V. P. 1992 Phys. Scr. 45, 508; Bharuthram, R., Saleem, H. and Shukla, P. K. 1992 Phys. Scr. 45, 512.CrossRefGoogle Scholar
Shukla, P. K., Sorasio, G. and Stenflo, L. 2002 Phys. Rev. E 66, 067401.Google Scholar
Shukla, P. K., Yu, M. Y. and Bharuthram, R. 1991 J. Geophys. Res. 96, 21343.CrossRefGoogle Scholar
Shukla, P. K., Yu, M. Y., Rahman, H. U. and Spatschek, K. H. 1981 Phys. Rev. A 23, 321; 1984 Phys. Rep. 105, 227.CrossRefGoogle Scholar
Sorasio, G., Shukla, P. K. and Stenflo, L. 2004 Phys. Rev. Lett. 92, 069501.CrossRefGoogle Scholar
Willig, J., Merlino, R. L. and D'Angelo, N. 1997a Phys. Lett. A 236, 223.CrossRefGoogle Scholar
Willig, J., Merlino, R. L. and D'Angelo, N. 1997b J. Geophys. Res. 102, 27249.CrossRefGoogle Scholar