Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T05:56:39.538Z Has data issue: false hasContentIssue false

Dispersion relations for electromagnetic waves in a dense magnetized plasma

Published online by Cambridge University Press:  01 December 2008

P. K. SHUKLA
Affiliation:
Institut für Theoretische Physik IV, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany ([email protected])
L. STENFLO
Affiliation:
Institut für Theoretische Physik IV, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany ([email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Dispersion relations for elliptically polarized extraordinary as well as linearly polarized ordinary electromagnetic waves propagating across an external magnetic field in a dense magnetoplasma are derived, taking into account the combined effects of the quantum electrodynamical (QED) field, as well as the quantum forces associated with the Bohm potential and the magnetization energy of the electrons due to the electron-1/2 spin effect. The QED (vacuum polarization) effects, which contribute to the nonlinear electron current density, modify the refractive index. Our results concern the propagation characteristics of perpendicularly propagating high-frequency electromagnetic waves in dense astrophysical objects (e.g. neutron stars and magnetars), as well as the next-generation intense laser–solid density plasma interaction experiments and quantum free-electron laser schemes.

Type
Letter to the Editor
Copyright
Copyright © Cambridge University Press 2008

References

[1]Marklund, M. and Shukla, P. K. 2006 Rev. Mod. Phys. 78, 591.CrossRefGoogle Scholar
Mourou, G. A., Tajima, T. and Bulanov, S. V. 2006 Rev. Mod. Phys. 78, 308.Google Scholar
[2]Lundin, J., Stenflo, L., Brodin, G., Marklund, M. and Shukla, P. K. 2007 Phys. Plasmas 14, 064503.Google Scholar
[3]Brodin, G., Marklund, M. and Stenflo, L. 2001 Phys. Rev. Lett. 87, 171801.Google Scholar
Shukla, P. K., Marklund, M., Tskhakaya, D. D. and Eliasson, B. 2004 Phys. Plasmas 11, 3767.CrossRefGoogle Scholar
Stenflo, L., Brodin, G., Marklund, M. and Shukla, P. K. 2005 J. Plasma Phys. 71, 709.CrossRefGoogle Scholar
Lundin, J., Zamanian, J., Marklund, M. and Brodin, G. 2007 Phys. Plasmas 14, 062112.Google Scholar
Di Piazza, A., Hatsagortsyan, K. Z. and Keitel, C. H. 2007 Phys. Plasmas 14, 032102.CrossRefGoogle Scholar
Brodin, G., Marklund, M., Eliasson, B. and Shukla, P. K. 2007 Phys. Rev. Lett. 98, 125001.Google Scholar
Brodin, G. and Stenflo, L. 2007 Phys. Lett. A 371, 462.CrossRefGoogle Scholar
[4]Stenflo, L. 1970 J. Plasma Phys. 4, 585.Google Scholar
Stenflo, L. 1976 Phys. Scr. 14, 320.CrossRefGoogle Scholar
[5]Shukla, P. K., Yu, M. Y. and Spatschek, K. H. 1975 Phys. Fluids 18, 265.CrossRefGoogle Scholar
Shukla, P. K. 1978 Nature 274, 874.Google Scholar
Shukla, P. K. and Stenflo, L. 1984 Phys. Rev. A 30, 2110.Google Scholar
Murtaza, G. and Shukla, P. K. 1984 J. Plasma Phys. 31, 423.CrossRefGoogle Scholar
[6]Manfredi, G. 2005 Fields Inst. Commun. 46, 263.Google Scholar
[7]Shukla, P. K. and Eliasson, B. 2006 Phys. Rev. Lett. 96, 245001.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2007 Phys. Rev. Lett. 99, 096401.Google Scholar
Shukla, P. K. and Eliasson, B. 2008 Phys. Rev. Lett. 100, 036801.Google Scholar
Shaikh, D. and Shukla, P. K. 2007 Phys. Rev. Lett. 99, 125002.CrossRefGoogle Scholar
[8]Shukla, P. K. 2007 Phys. Lett. A 369, 312.Google Scholar
[9]Shukla, P. K. 2008 J. Plasma Phys. 74, 107.Google Scholar
[10]Gardner, C. L. and Ringhofer, C. 1996 Phys. Rev. E 53, 157.Google Scholar
[11]Marklund, M. and Brodin, G. 2007 Phys. Rev. Lett. 98, 025001.CrossRefGoogle Scholar
[12]Brodin, G. and Marklund, M. 2007 Phys. Rev. E 76, 055403.Google Scholar
[13]Yu, M. Y., Spatschek, K. H. and Shukla, P. K. 1974 Z. Naturforsch. A 29, 1736.CrossRefGoogle Scholar
[14]Baring, M. G. and Harding, A. K. 1998 Astrophys. J. 507, L55.CrossRefGoogle Scholar
Harding, A. K. and Lai, D. 2006 Rep. Prog. Phys. 69, 2631.CrossRefGoogle Scholar
[15]Chabrier, G., Douchin, F. and Potekhin, Y. 2002 J. Phys.: Condens. Matter 14, 9133.Google Scholar
Chabrier, G., Saumon, D. and Potekhin, A. Y. 2006 J. Phys. A: Math. Gen. 39, 4411.Google Scholar
Potekhin, A. Y., Chabrier, G., Lai, D., Ho, W. C. G. and van Adelsberg, M. 2006 J. Phys. A: Math. Gen. 39, 4453.Google Scholar
[16]Kouveliotou, C. et al. 1998 Nature (London) 393, 235.Google Scholar
[17]Andreev, A. V. 2000 JETP Lett. 72, 238.CrossRefGoogle Scholar
[18]Salamin, Y. I., Hu, S. X., Hatsagortsyan, K. Z. and Keitel, C. H. 2006 Phys. Rep. 427, 41.Google Scholar
[19]Glenzer, S. H. et al. 2007 Phys. Rev. Lett. 98, 065002.CrossRefGoogle Scholar
[20]Ringwald, A. 2001 Phys. Lett. B 510, 107.Google Scholar
[21]Serbeto, A., Mendonça, J. T., Tsui, K. H. and Bonifacio, R. 2008 Phys. Plasmas 15, 013110.Google Scholar