Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-23T18:21:26.154Z Has data issue: false hasContentIssue false

Dispersion relation and growth rate in a free-electron laser with a background plasma

Published online by Cambridge University Press:  04 February 2015

T. Mohsenpour*
Affiliation:
Department of Physics, Faculty of Basic Sciences, University of Mazandaran, P. O. Box 47416-95447, Babolsar, Iran
B. Maraghechi
Affiliation:
Department of Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
*
Email address for correspondence: [email protected]

Abstract

The method of perturbation has been applied to derive a general dispersion relation for a free-electron laser (FEL) with background plasma and helical wiggler in the presence of an axial magnetic field. This dispersion relation is solved numerically to find unstable interactions among all of the wave modes. Numerical calculations show that new coupling between the left wave and positive-energy space-charge of electron beam are found when wiggler induced velocity is large. This coupling does not change with increasing the plasma density. The growth rate of FEL is changed with increasing the plasma density and the normalized axial magnetic field.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agarwal, R. N., Ghanshyam, Tripathi V. K. and Agarwal, P. C. 1996 IEEE Trans. Plasma Sci. 24, 1197.CrossRefGoogle Scholar
Babaei, S. and Maraghechi, B. 2007 Phys. Plasmas 14, 053 114.CrossRefGoogle Scholar
Babaei, S. and Maraghechi, B. 2008 Phys. Plasmas 15, 1.CrossRefGoogle Scholar
Ghazavi, A., Maraghechi, B. and Mohsenpour, T. 2010 Phys. Plasmas 108, 123 302.Google Scholar
Liu, W., Yang, Z. and Liang, Z. 2004 Int. J. Infrared Millim. Waves 25, 1053.CrossRefGoogle Scholar
Nadrifard, S.Maraghechi, B. and Mohsenpour, T.Plasma Phys. Control. Fusion 55, 025 012.CrossRefGoogle Scholar
Pant, K. K. and Tripathi, V. K. 1994a IEEE Trans. Plasma Sci. 22, 217.CrossRefGoogle Scholar
Pant, K. K. and Tripathi, V. K. 1994b Phys. Plasmas 1, 1025.CrossRefGoogle Scholar
Parashar, J., Pandey, H. D., Sharma, A. K. and Tripathi, V. K. 1997 J. Plasma Phys. 58, 613.CrossRefGoogle Scholar
Petrillo, V. and Maroli, C. 2000 Phys. Rev. E 62, 8612.Google Scholar
Petrillo, V., Serbeto, A., Maroli, C., Parrella, R. and Bonifacio, R. 1995 Phys. Rev. E 51, 6293.CrossRefGoogle Scholar
Qian, B., Liu, Y. and Li, C. 1994 Phys. Plasmas 1, 4089.CrossRefGoogle Scholar
Schunemann, K. and Zaginaylov, G. I. 2001 Frequenz 55, 252.CrossRefGoogle Scholar
Seo, Y. and Choi, E. H. 1997 IEEE Trans. Plasma Sci. 25, 360.Google Scholar
Serbeto, A. and Alves, M. V. 1993 IEEE Trans. Plasma Sci. 21, 243.CrossRefGoogle Scholar
Sharma, A. and Tripathi, V. K. 1993 Phys. Fluids B 5, 171.CrossRefGoogle Scholar
Sharma, A. and Tripathi, V. K. 1996 Phys. Plasmas 3, 3116.CrossRefGoogle Scholar
Shi, Z., Yang, Z. and Liang, Z. 2003 Int. J. Infrared Millim. Waves 24, 1823.CrossRefGoogle Scholar
Shokri, B., Ghomi, H. and Latifi, H. 2000 Phys. Plasmas 7, 2671.CrossRefGoogle Scholar
Tripathi, V. K. and Liu, C. S. 1990 IEEE Trans. Plasma Sci. 18, 466.CrossRefGoogle Scholar
Tsui, K. H. and Serbeto, A. 1998 Phys. Rev. E 58, 5013.CrossRefGoogle Scholar
Wen-Bing, P. and Ya-Shen, C. 1988 Int. J. Electron. 65, 551.CrossRefGoogle Scholar
Yang, Z., Chen, H. and Liang, Z. 2002 Int. J. Infrared Millim. Waves 23, 1057.CrossRefGoogle Scholar
Zaginaylov, G. I., Shcherbinin, V. I., Schuenemann, K. and Thumm, M. K. 2006 IEEE Trans. Plasma Sci. 34, 512.CrossRefGoogle Scholar