Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T19:19:11.674Z Has data issue: false hasContentIssue false

Dispersion properties of electrostatic oscillations in quantum plasmas

Published online by Cambridge University Press:  27 October 2009

BENGT ELIASSON
Affiliation:
Institut für Theoretische Physik IV, Ruhr-Universität Bochum, D-44780 Bochum, Germany ([email protected]) Department of Physics, Umeå University, SE-901 87 Umeå, Sweden
PADMA KANT SHUKLA
Affiliation:
Institut für Theoretische Physik IV, Ruhr-Universität Bochum, D-44780 Bochum, Germany ([email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a derivation of the dispersion relation for electrostatic oscillations in a zero-temperature quantum plasma, in which degenerate electrons are governed by the Wigner equation, while non-degenerate ions follow the classical fluid equations. The Poisson equation determines the electrostatic wave potential. We consider parameters ranging from semiconductor plasmas to metallic plasmas and electron densities of compressed matter such as in laser compression schemes and dense astrophysical objects. Owing to the wave diffraction caused by overlapping electron wave function because of the Heisenberg uncertainty principle in dense plasmas, we have the possibility of Landau damping of the high-frequency electron plasma oscillations at large enough wavenumbers. The exact dispersion relations for the electron plasma oscillations are solved numerically and compared with the ones obtained by using approximate formulas for the electron susceptibility in the high- and low-frequency cases.

Type
Letter to the Editor
Copyright
Copyright © Cambridge University Press 2009

References

Azechi, H., Jitsuno, T., Kanabe, T., Katayama, M., Mima, K., Miyanaga, N., Nakai, M., Nakai, S., Nakaishi, H., Nakatsuka, M. et al. 1991 High-density compression experiments at ILE, Osaka. Laser Part. Beams 9, 193207.CrossRefGoogle Scholar
Azechi, H., and the FIREX Project 2006 Present status of the FIREX programme for the demonstration of ignition and burn. Plasma Phys. Control. Fusion 48, B267B275.CrossRefGoogle Scholar
Bohm, D. 1952. A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. I. Phys. Rev. 85, 166179.CrossRefGoogle Scholar
Bohm, D. and Pines, D. 1953 A collective description of electron interactions. III. Coulomb interactions in a degenerate gas. Phys. Rev. 92, 609625.CrossRefGoogle Scholar
Bonitz, M., Semkat, D., Filinov, A. et al. , 2003 Theory and simulation of strong correlations in quantum coulomb systems. J. Phys. A: Math. Gen. 36, 59215930.CrossRefGoogle Scholar
Chandrasekhar, S. 1935 The highly collapsed configurations of a stellar mass (second paper). MNRAS 95, 207225.CrossRefGoogle Scholar
Crouseilles, N., Hervieux, P.-A. and Manfredi, G. 2008 Quantum hydrodynamic models for nonlinear electron dynamics in thin metal films. Phys. Rev. B 78, 155412.CrossRefGoogle Scholar
Ferrel, R. A. 1957 Characteristic energy loss of electrons passing through metal foils. II. Dispersion relation and short wavelength cutoff for plasma oscillations. Phys. Rev. 107, 450462.CrossRefGoogle Scholar
Glenzer, S. H., Landen, O. L., Neumayer, P., Lee, R. W., Widmann, K., Pollaine, S. W., Wallace, R. J., Gregori, G., Höll, A., Bomath, T. et al. 2007 Observations of plasmons in warm dense matter Phys. Rev. Lett. 98, 065002.CrossRefGoogle ScholarPubMed
Klimontovich, Y. and Silin, V. P. 1961 The spectra of systems of interacting particles. In Plasma Physics (ed. Drummond, J. E.) New York: McGraw-Hill, ch. 2, pp. 3587.Google Scholar
Klimontovich, Y. L. and Silin, V. P. 1952 Doklady Akad. Nauk S.S.S.R. 82, 361. Also published in J. Exp. Teoret. Fis. 23, 151.Google Scholar
Kritcher, A. L., Neumayer, P., Castor, J., Döppner, T., Falcone, R. W., Landen, O. L., Lee, H. J., Morse, E. C., Ng, A., Pollaine, S. et al. 2008 Ultrafast X-ray Thomson scattering of shock-compressed matter. Science 322, 6971.CrossRefGoogle ScholarPubMed
Lee, H. J., Neumayer, P., Castor, J., Döppner, T., Falcone, R. W., Fortmann, C., Hammel, B. A., Kritcher, A. L., Landen, O. L., Lee, R. W. et al. 2009 X-Ray Thomson-scattering measurements of density and temperature in shock-compressed beryllium. Phys. Rev. Lett. 102, 115001.CrossRefGoogle ScholarPubMed
Lindl, J. 1995 Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 3933.CrossRefGoogle Scholar
Manfredi, G. 2005 How to model quantum plasmas. Fields Inst. Comm. 46, 263287.Google Scholar
Mendonça, J. T., Ribeiro, E. and Shukla, P. K. 2008 Wave kinetic description of quantum electron-positron plasmas. J. Plasma Phys. 74, 9194.CrossRefGoogle Scholar
Pines, D. 1961 I. Quantum plasma physics: classical and quantum plasmas. J. Nucl. Energy: Part C: Plasma Phys. 2, 517.CrossRefGoogle Scholar
Serbeto, A., Mendonça, J. T., Tsui, K. H. and Bonifacio, R. 2008 Quantum wave kinetics of high-gain free-electron lasers. Phys. Plasmas 15, 013110.CrossRefGoogle Scholar
Shaikh, D. and Shukla, P. K. 2007 Fluid turbulence in quantum plasmas. Phys. Rev. Lett. 99, 125002.CrossRefGoogle ScholarPubMed
Shukla, P. K. 2009 A new spin on quantum plasmas. Nature Phys. 5, 9293.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2006 Formation and dynamics of dark solitons and vortices in quantum electron plasmas. Phys. Rev. Lett. 96, 245001.CrossRefGoogle ScholarPubMed
Son, S. and Fisch, N. J. 2005 Current-drive efficiency in a degenerate plasma. Phys. Rev. Lett. 95, 225002.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M. E., Kruer, W. L., Wilks, S. C., Woodworth, J., Campbell, E. M., Perry, M. D. et al. 1994 Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Tabak, M., Clark, D. S., Hatchett, S. P., Key, M. H., Lasinski, B. F., Snavley, R. A., Wilks, S. C., Town, R. P. J., Stephens, R., Kampbell, E. M. et al. 2005 Review of progress in fast ignition. Phys. Plasmas 12, 057305.CrossRefGoogle Scholar
Watanabe, H. 1956 Experimental evidence for the collective nature of the characteristic energy loss of electrons in solids –studies on the dispersion relation of plasma frequency. J. Phys. Soc. Jpn 11, 112119.CrossRefGoogle Scholar