Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T06:31:07.607Z Has data issue: false hasContentIssue false

Dipolar radiation from spinning dust grains coupled to an electromagnetic wave

Published online by Cambridge University Press:  01 August 2007

A. GUERREIRO
Affiliation:
Physics Department, Faculdade de Ciěncias daUniversidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
M. ELOY
Affiliation:
Faculdade de Engenharia daUniversidade Católica Portuguesa, Estrada Octávio Pato, 2635-631 Rio de Mouro, Portugal
J. T. MENDONÇA
Affiliation:
Instituto Superior Técnico, Av. Rovisco Pais, 1000 Lisboa, Portugal
R. BINGHAM
Affiliation:
Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 OQX, UK

Abstract

In this paper we investigate how the complex rotation and quivering motion of an elongated polarized dust grain in the presence of a monochromatic electromagnetic (EM) wave can produce dipolar emission with two distinct spectral components. We present a model for the emission of radiation by elongated polarized dust grains under the influence of both an external EM wave and a constant background magnetic field. The dust, exhibiting rotational motion at the external EM field frequency ω 0 as well as quivering motion at a frequency Ω0, proportional to the EM field amplitude, will radiate with frequencies that will depend on the external field wavelength and amplitude. The radiated spectra exhibits a frequency around ω0, and sidebands at ω0 ± ω0 and ω0± 2Ω0. Since the amplitude and the frequency of the background EM field are independent parameters, this model establishes a correlation between different spectral components of galactic dipolar emission, which may help to explain the correlation between a component of the Galactic microwave emission and the 100 μ m thermal emission from interstellar dust that has been recently measured.

Type
Papers
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Leicht, E. M., Readhead, A. C. S., Pearson, T. J. and Meyers, S. T. 1997 Astrophys. J. 490, 273.Google Scholar
Kogut, A., Banday, A. J., Bennett, C. L., Gorski, K. M., Hinshaw, G. and Reach, W. T. 1996 Astrophys. J. 460, 1.CrossRefGoogle Scholar
de Oliveira-Costa, A., Kogut, A., Devlin, M. J., Netterfield, C. B., Page, L. A. and Wollack, E. J. 1997 Astrophys. J. 482, L17.CrossRefGoogle Scholar
[2]Draine, D. T. and Lazarian, A.Astrophys. J. 1998 494, L19.CrossRefGoogle Scholar
[3]de Oliveira-Costa, A. et al. Astrophys. J. 2002 567, 363.CrossRefGoogle Scholar
Mukherjee, P., Jones, A. W., Kneissl, R. and Lasenby, A. N. 2001 Mon. Not. R. Astron. Soc. 320, 224.CrossRefGoogle Scholar
Lazarian, A. and Prunet, S. 2002 The proceedings of the Workshop on Astrophysical Polarized Backgrounds, AIP Conference Proceedings, 609, 3243, AIP Publishing, New York (2002).CrossRefGoogle Scholar
Casassus, S., Readhead, A. C. S., Pearson, T. J., Nyman, L. A., Sheperd, M. C. and Bronfman, L. 2004 Astrophys. J. 606, 599.CrossRefGoogle Scholar
Finkbeiner, D. 2005 Astrophys. J. 614, 186.CrossRefGoogle Scholar
[4]Lazarian, A. and Prunet, S., Cecchini, S.Cortiglioni, R.Sault, C. Sbarra (Eds.), 2002 Astrophysical Polarized Backgrounds, AIP Conference Proceedings 609, 32, AIP Publishing, New York.CrossRefGoogle Scholar
[5]Ponthieu, N. 2003 The proceedings of “The Cosmic Microwave Background and its polarization”. New Astronomy Reviews, 47, 1112, 10471056, Elsevier.Google Scholar
[6]Baccigalupi, C. 2003 New Astronomy Reviews 2003 47, 1127.CrossRefGoogle Scholar
[7]van Paradijs, J., Telesco, C. M., Kouveliotou, C. and Fishman, G. J. 1994 Astrophys. J. 429, L19.CrossRefGoogle Scholar
[8]Nitter, T., Havnes, O. and Melandsø, F. 1998 Geophys. Res. 103, 6605.CrossRefGoogle Scholar
[9]Chiang, C. H. and I, L. 1996 Phys. Rev. Lett. 77, 647.CrossRefGoogle Scholar
[10]Spitzer, L. Jr. 1997 Physical Processes in the Interstellar Medium. New York: Wiley, p. 182.Google Scholar
[11]Harwit, M. 1998 Astrophysical Concepts. New York: Springer, p. 405.CrossRefGoogle Scholar
[12]Draine, D. T. and Lazarian, A. 1998 Astrophys. J. 508, 179.CrossRefGoogle Scholar
[13]Anderson, N. and Watson, W. D. 1997 Astron. Astrophys. 270, 477.Google Scholar
[14]Rouan, D., Léger, A., Omont, A. and Giard, M. 1992 Astron. Astrophys. 253, 498.Google Scholar
[15]Rouan, D., Léger, A. and Coupanec, P. 1997 Astron. Astrophys. 324, 661.Google Scholar
[16]Hunter, D. A. and Watson, W. D. 1978 Astrophys. J. 226, 477.CrossRefGoogle Scholar
[17]Draine, B. T. and Weingartner, J. C. 1996 Astrophys. J. 470, 551.CrossRefGoogle Scholar
[18]Tskhakaya, D. D. and Shukla, P. K. 2001 Phys. Lett. A 279, 243.CrossRefGoogle Scholar
[19]Sato, N., Uchida, G., Kaneko, T., Shimizu, S. and Iizuka, S. 2000 Frontiers in Dusty Plasmas (ed. Nakamura, Y., Yokota, T. and Shukla, P. K.). Singapore: World Scientific, p. 329.CrossRefGoogle Scholar
[20]Sato, N., Uchida, G., Kaneko, T., Shimizu, S. and Iizuka, S. 2001 Phys. Plasmas 8, 1786.CrossRefGoogle Scholar
[21]Jackson, J. D. 1998 Classical Electrodynamics, 3rd ed., 661679, John Wiley & Sons, New York.Google Scholar
[22]Beiser, A. 1973 Concepts of Modern Physics, 2nd edn. McGraw-Hill, p. 300.Google Scholar
[23]Binney, J. J., Dowrick, N. J., Fisher, A. J. and Newman, M. E. J. 1992 The Theory of Critical Phenomena. Oxford: Oxford Press.CrossRefGoogle Scholar
[24]Metropolis, N., Rosenbluth, A., Teller, A. M. and Teller, E. 1953 J. Chem. Phys. 21, 1087.CrossRefGoogle Scholar