Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-16T07:30:45.946Z Has data issue: false hasContentIssue false

Development of advanced linearized gyrokinetic collision operators using a moment approach

Published online by Cambridge University Press:  10 September 2021

B.J. Frei*
Affiliation:
École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland
J. Ball
Affiliation:
École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland
A.C.D. Hoffmann
Affiliation:
École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland
R. Jorge
Affiliation:
Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
P. Ricci
Affiliation:
École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland
L. Stenger
Affiliation:
École Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland
*
Email address for correspondence: [email protected]

Abstract

The derivation and numerical implementation of a linearized version of the gyrokinetic (GK) Coulomb collision operator (Jorge et al., J. Plasma Phys., vol. 85, 2019, 905850604) and of the widely used linearized GK Sugama collision operator (Sugama et al., Phys. Plasmas, vol. 16, 2009, 112503) is reported. An approach based on a Hermite–Laguerre moment expansion of the perturbed gyrocentre distribution function is used, referred to as gyromoment expansion. This approach allows the considering of arbitrary perpendicular wavenumber and expressing the two linearized GK operators as a linear combination of gyromoments where the expansion coefficients are given by closed analytical expressions that depend on the perpendicular wavenumber and on the temperature and mass ratios of the colliding species. The drift-kinetic (DK) limits of the GK linearized Coulomb and Sugama operators are also obtained. Comparisons between the gyromoment approach and the DK Coulomb and GK Sugama operators in the continuum GK code GENE are reported, focusing on the ion-temperature-gradient instability and zonal flow damping, finding an excellent agreement. It is confirmed that stronger collisional damping of the zonal flow residual by the Sugama GK model compared with the GK linearized Coulomb (Pan et al., Phys. Plasmas, vol. 27, 2020, 042307) persists at higher collisionality. Finally, we show that the numerical efficiency of the gyromoment approach increases with collisionality, a desired property for boundary plasma applications.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abel, I.G., Barnes, M., Cowley, S.C., Dorland, W. & Schekochihin, A.A. 2008 Linearized model Fokker–Planck collision operators for gyrokinetic simulations. I. Theory. Phys. Plasmas 15 (12), 122509.CrossRefGoogle Scholar
Barnes, M., Abel, I.G., Dorland, W., Ernst, D.R., Hammett, G.W., Ricci, P., Rogers, B.N., Schekochihin, A.A. & Tatsuno, T. 2009 Linearized model Fokker–Planck collision operators for gyrokinetic simulations. II. Numerical implementation and tests. Phys. Plasmas 16 (7), 072107.CrossRefGoogle Scholar
Belli, E.A. & Candy, J. 2011 Full linearized Fokker–Planck collisions in neoclassical transport simulations. Plasma Phys. Control. Fusion 54 (1), 015015.CrossRefGoogle Scholar
Belli, E.A. & Candy, J. 2017 Implications of advanced collision operators for gyrokinetic simulation. Plasma Phys. Control. Fusion 59 (4), 045005.CrossRefGoogle Scholar
Boyd, J.P. 2001 Chebyshev and Fourier Spectral Methods. Courier Corporation.Google Scholar
Brizard, A.J. & Mishchenko, A. 2009 Guiding-center recursive Vlasov and Lie-transform methods in plasma physics. J. Plasma Phys. 75 (3), 675.CrossRefGoogle Scholar
Candy, J. & Waltz, R.E. 2003 Anomalous transport scaling in the diii-d tokamak matched by supercomputer simulation. Phys. Rev. Lett. 91 (4), 045001.CrossRefGoogle ScholarPubMed
Cary, J.R. 1981 Lie transform perturbation theory for Hamiltonian systems. Phys. Rep. 79 (2), 129.CrossRefGoogle Scholar
Chang, C.S., Ku, S., Tynan, G.R., Hager, R., Churchill, R.M., Cziegler, I., Greenwald, M., Hubbard, A.E. & Hughes, J.W. 2017 Fast low-to-high confinement mode bifurcation dynamics in a tokamak edge plasma gyrokinetic simulation. Phys. Rev. Lett. 118 (17), 175001.CrossRefGoogle Scholar
Chen, L., Briguglio, S. & Romanelli, F. 1991 The long-wavelength limit of the ion-temperature gradient mode in tokamak plasmas. Phys. Fluids B 3 (3), 611.CrossRefGoogle Scholar
Crandall, P., Jarema, D., Doerk, H., Pan, Q., Merlo, G., Görler, T., Bañón Navarro, A., Told, D., Maurer, M. & Jenko, F. 2020 Multi-species collisions for delta-f gyrokinetic simulations: implementation and verification with gene. Comput. Phys. Commun. 255, 107360.CrossRefGoogle Scholar
Dimits, A.M. & Cohen, B.I. 1994 Collision operators for partially linearized particle simulation codes. Phys. Rev. E 49, 709.CrossRefGoogle ScholarPubMed
Dimits, A.M., Williams, T.J., Byers, J.A. & Cohen, B.I. 1996 Scalings of ion-temperature- gradient-driven anomalous transport in tokamaks. Phys. Rev. Lett. 77 (1), 71.CrossRefGoogle ScholarPubMed
Donnel, P., Garbet, X., Sarazin, Y., Grandgirard, V., Asahi, Y., Bouzat, N., Caschera, E., Dif-Pradalier, G., Ehrlacher, C., Ghendrih, P., et al. 2019 A multi-species collisional operator for full-f global gyrokinetics codes: numerical aspects and verification with the Gysela code. Comput. Phys. Commun. 234, 1.CrossRefGoogle Scholar
Dorf, M.A., Cohen, R.H., Dorr, M., Hittinger, J. & Rognlien, T.D. 2014 Progress with the COGENT edge kinetic code: implementing the Fokker–Planck collision operator. Contrib. Plasma Phys. 54 (4–6), 517.CrossRefGoogle Scholar
Dougherty, J.P. 1964 Model Fokker–Planck equation for a plasma and its solution. Phys. Fluids 7 (11), 1788.CrossRefGoogle Scholar
Dudson, B.D., Umansky, M.V., Xu, X.Q., Snyder, P.B. & Wilson, H.R. 2009 Bout++: a framework for parallel plasma fluid simulations. Comput. Phys. Commun. 180 (9), 1467.CrossRefGoogle Scholar
Ernst, D.R., Bonoli, P.T., Catto, P.J., Dorland, W., Fiore, C.L., Granetz, R.S., Greenwald, M., Hubbard, A.E., Porkolab, M., Redi, M.H., et al. 2004 Role of trapped electron mode turbulence in internal transport barrier control in the alcator c-mod tokamak. Phys. Plasmas 11 (5), 2637.CrossRefGoogle Scholar
Francisquez, M., Bernard, T.N., Mandell, N.R., Hammett, G.W. & Hakim, A. 2020 Conservative discontinuous Galerkin scheme of a gyro-averaged dougherty collision operator. Nucl. Fusion 60 (9), 096021.CrossRefGoogle Scholar
Frei, B.J., Jorge, R. & Ricci, P. 2020 A gyrokinetic model for the plasma periphery of tokamak devices. J. Plasma Phys. 86 (2), 905860205.CrossRefGoogle Scholar
Garbet, X., Mantica, P., Angioni, C., Asp, E., Baranov, Y., Bourdelle, C., Budny, R., Crisanti, F., Cordey, G., Garzotti, L., et al. 2004 Physics of transport in tokamaks. Plasma Phys. Control. Fusion 46 (12B), B557.CrossRefGoogle Scholar
Giacomin, M., Stenger, L.N. & Ricci, P. 2020 Turbulence and flows in the plasma boundary of snowflake magnetic configurations. Nucl. Fusion 60 (2), 024001.CrossRefGoogle Scholar
Görler, T., Lapillonne, X., Brunner, S., Dannert, T., Jenko, F., Aghdam, S.K., Marcus, P., McMillan, B.F., Merz, F., Sauter, O., et al. 2011 Flux-and gradient-driven global gyrokinetic simulation of tokamak turbulence. Phys. Plasmas 18 (5), 056103.CrossRefGoogle Scholar
Gradshteyn, I.S. & Ryzhik, I.M. 2014 Table of Integrals, Series, and Products. Academic Press.Google Scholar
Hager, R., Yoon, E.S., Ku, S., D'Azevedo, E.F., Worley, P.H. & Chang, C.-S. 2016 A fully non-linear multi-species Fokker–Planck-landau collision operator for simulation of fusion plasma. J. Comput. Phys. 315, 644.CrossRefGoogle Scholar
Hahm, T.S. & Tang, W.M. 1989 Properties of ion temperature gradient drift instabilities in h-mode plasmas. Phys. Fluids B 1 (6), 1185.CrossRefGoogle Scholar
Hallatschek, K. & Zeiler, A. 2000 Nonlocal simulation of the transition from ballooning to ion temperature gradient mode turbulence in the tokamak edge. Phys. Plasmas 7 (6), 2554.CrossRefGoogle Scholar
Halpern, F., Ricci, P., Jolliet, S., Loizu, J., Morales, J., Mosetto, A., Musil, F., Riva, F., Tran, T.-H. & Wersal, C. 2016 The GBS code for tokamak scrape-off layer simulations. J. Comput. Phys. 315, 388.CrossRefGoogle Scholar
Hammett, G.W., Beer, M.A., Dorland, W., Cowley, S.C. & Smith, S.A. 1993 Developments in the gyrofluid approach to tokamak turbulence simulations. Plasma Phys. Control. Fusion 35 (8), 973.CrossRefGoogle Scholar
Hasegawa, A., Maclennan, C.G. & Kodama, Y. 1979 Nonlinear behavior and turbulence spectra of drift waves and Rossby waves. Phys. Fluids 22 (11), 2122.CrossRefGoogle Scholar
Hazeltine, R.D. & Meiss, J.D. 2003 Plasma Confinement. Courier Corporation.Google Scholar
Helander, P. & Sigmar, D.J. 2002 Collisional transport in magnetized plasmas. Cambridge University Press.Google Scholar
Held, E.D., Kruger, S.E., Ji, J.-Y., Belli, E.A. & Lyons, B.C. 2015 Verification of continuum drift kinetic equation solvers in nimrod. Phys. Plasmas 22 (3), 032511.CrossRefGoogle Scholar
Hinton, F.L. & Rosenbluth, M.N. 1999 Dynamics of axisymmetric (E $\times$ B) and poloidal flows in tokamaks. Plasma Phys. Control. Fusion 41 (3A), 653.CrossRefGoogle Scholar
Hirshman, S.P. & Sigmar, D.J. 1976 Approximate Fokker–Planck collision operator for transport theory applications. Phys. Fluids 19 (10), 1532.CrossRefGoogle Scholar
Holtkamp, N. 2009 The status of the iter design. Fusion Engng Des. 84 (2–6), 98.CrossRefGoogle Scholar
Idomura, Y., Ida, M., Kano, T., Aiba, N. & Tokuda, S. 2008 Conservative global gyrokinetic toroidal full-f five-dimensional Vlasov simulation. Comput. Phys. Commun. 179 (6), 391.CrossRefGoogle Scholar
Idomura, Y., Tokuda, S. & Kishimoto, Y. 2003 Global gyrokinetic simulation of ion temperature gradient driven turbulence in plasmas using a canonical Maxwellian distribution. Nucl. Fusion 43 (4), 234.CrossRefGoogle Scholar
Jenko, F., Dorland, W., Kotschenreuther, M. & Rogers, B.N. 2000 Electron temperature gradient driven turbulence. Phys. Plasmas 7 (5), 1904.CrossRefGoogle Scholar
Ji, J.-Y. & Held, E.D. 2006 Exact linearized Coulomb collision operator in the moment expansion. Phys. Plasmas 13 (10), 102103.CrossRefGoogle Scholar
Jorge, R., Frei, B.J. & Ricci, P. 2019 Nonlinear gyrokinetic Coulomb collision operator. J. Plasma Phys. 85 (6), 905850604.CrossRefGoogle Scholar
Jorge, R., Ricci, P. & Loureiro, N.F. 2017 A drift-kinetic analytical model for scrape-off layer plasma dynamics at arbitrary collisionality. J. Plasma Phys. 83 (6), 905830606.CrossRefGoogle Scholar
Jorge, R., Ricci, P. & Loureiro, N.F. 2018 Theory of the drift-wave instability at arbitrary collisionality. Phys. Rev. Lett. 121 (16), 165001.CrossRefGoogle ScholarPubMed
Kolesnikov, R.A., Wang, W.X., Hinton, F.L., Rewoldt, G. & Tang, W.M. 2010 Drift-kinetic simulation of neoclassical transport with impurities in tokamaks. Phys. Plasmas 17 (2), 022506.CrossRefGoogle Scholar
Landreman, M. & Ernst, D.R. 2012 Local and global Fokker–Planck neoclassical calculations showing flow and bootstrap current modification in a pedestal. Plasma Phys. Control. Fusion 54 (11), 115006.CrossRefGoogle Scholar
Landreman, M. & Ernst, D.R. 2013 New velocity-space discretization for continuum kinetic calculations and Fokker–Planck collisions. J. Comput. Phys. 243, 130.CrossRefGoogle Scholar
Li, B. & Ernst, D.R. 2011 Gyrokinetic Fokker–Planck collision operator. Phys. Rev. Lett. 106 (19), 195002.CrossRefGoogle ScholarPubMed
Madsen, J. 2013 Full-f gyrofluid model. Phys. Plasmas 20 (7), 072301.CrossRefGoogle Scholar
Mandell, N.R., Dorland, W. & Landreman, M. 2018 Laguerre–Hermite pseudo-spectral velocity formulation of gyrokinetics. J. Plasma Phys. 84 (1), 905840108.CrossRefGoogle Scholar
Merlo, G., Sauter, O., Brunner, S., Burckel, A., Camenen, Y., Casson, F.J., Dorland, W., Fable, E., Görler, T., Jenko, F., et al. 2016 Linear multispecies gyrokinetic flux tube benchmarks in shaped tokamak plasmas. Phys. Plasmas 23 (3), 032104.CrossRefGoogle Scholar
Mosetto, A., Halpern, F.D., Jolliet, S., Loizu, J. & Ricci, P. 2015 Finite ion temperature effects on scrape-off layer turbulence. Phys. Plasmas 22 (1), 012308.CrossRefGoogle Scholar
Nakata, M., Nunami, M., Watanabe, T.-H. & Sugama, H. 2015 Improved collision operator for plasma kinetic simulations with multi-species ions and electrons. Comput. Phys. Commun. 197, 61.CrossRefGoogle Scholar
Nunami, M., Nakata, M., Watanabe, T.-H. & Sugama, H. 2015 Development of linearized collision operator for multiple ion species in gyrokinetic flux-tube simulations. Plasma Fusion Res. 10, 1403058.CrossRefGoogle Scholar
Pan, Q. & Ernst, D.R. 2019 Gyrokinetic landau collision operator in conservative form. Phys. Rev. E 99 (2), 023201.CrossRefGoogle ScholarPubMed
Pan, Q., Ernst, D.R. & Crandall, P. 2020 First implementation of gyrokinetic exact linearized Landau collision operator and comparison with models. Phys. Plasmas 27 (4), 042307.CrossRefGoogle Scholar
Pan, Q., Ernst, D.R. & Hatch, D.R. 2021 Importance of gyrokinetic exact Fokker–Planck collisions in fusion plasma turbulence. Phys. Rev. E 103 (5), L051202.CrossRefGoogle ScholarPubMed
Paruta, P., Ricci, P., Riva, F., Wersal, C., Beadle, C. & Frei, B. 2018 Simulation of plasma turbulence in the periphery of diverted tokamak by using the GBS code. Phys. Plasmas 25 (11), 112301.CrossRefGoogle Scholar
Romanelli, F. 1989 Ion temperature-gradient-driven modes and anomalous ion transport in tokamaks. Phys. Fluids B 1 (5), 1018.CrossRefGoogle Scholar
Romanelli, F. & Briguglio, S. 1990 Toroidal semicollisional microinstabilities and anomalous electron and ion transport. Phys. Fluids B 2 (4), 754.CrossRefGoogle Scholar
Rosenbluth, M.N., Hazeltine, R.D. & Hinton, F.L. 1972 Plasma transport in toroidal confinement systems. Phys. Fluids 15 (1), 116.CrossRefGoogle Scholar
Rosenbluth, M.N. & Hinton, F.L. 1998 Poloidal flow driven by ion-temperature-gradient turbulence in tokamaks. Phys. Rev. Lett. 80 (4), 724.CrossRefGoogle Scholar
Rosenbluth, M.N., MacDonald, W.M. & Judd, D.L. 1957 Fokker–Planck equation for an inverse-square force. Phys. Rev. 107 (1), 1.CrossRefGoogle Scholar
Shimada, M., Campbell, D.J., Mukhovatov, V., Fujiwara, M., Kirneva, N., Lackner, K., Nagami, M., Pustovitov, V.D., Uckan, N., Wesley, J., et al. 2007 Progress in the iter physics basis-chapter 1: overview and summary. Nucl. Fusion 47, S1.CrossRefGoogle Scholar
Snider, R.F. 2017 Irreducible Cartesian Tensors. De Gruyter Studies in Mathematical Physics, vol. 1. De Gruyter.CrossRefGoogle Scholar
Stegmeir, A., Ross, A., Body, T., Francisquez, M., Zholobenko, W., Coster, D., Maj, O., Manz, P., Jenko, F., Rogers, B.N., et al. 2019 Global turbulence simulations of the tokamak edge region with grillix. Phys. Plasmas 26 (5), 052517.CrossRefGoogle Scholar
Sugama, H., Matsuoka, S., Satake, S., Nunami, M. & Watanabe, T.-H. 2019 Improved linearized model collision operator for the highly collisional regime. Phys. Plasmas 26 (10), 102108.CrossRefGoogle Scholar
Sugama, H., Watanabe, T.-H. & Nunami, M. 2009 Linearized model collision operators for multiple ion species plasmas and gyrokinetic entropy balance equations. Phys. Plasmas 16 (11), 112503.CrossRefGoogle Scholar
Tamain, P., Bufferand, H., Ciraolo, G., Colin, C., Galassi, D., Ghendrih, P., Schwander, F. & Serre, E. 2016 The tokam3x code for edge turbulence fluid simulations of tokamak plasmas in versatile magnetic geometries. J. Comput. Phys. 321, 606.CrossRefGoogle Scholar
Villard, L., Angelino, P., Bottino, A., Brunner, S., Jolliet, S., McMillan, B.F., Tran, T.-M. & Vernay, T. 2013 Global gyrokinetic ion temperature gradient turbulence simulations of ITER. Plasma Phys. Control. Fusion 55 (7), 074017.CrossRefGoogle Scholar
Wong, M.W. 1998 The Weyl Transform. Springer.Google Scholar
Xiao, Y., Catto, P.J. & Molvig, K. 2007 Collisional damping for ion temperature gradient mode driven zonal flow. Phys. Plasmas 14 (3), 032302.CrossRefGoogle Scholar
Xu, X.Q. & Rosenbluth, M.N. 1991 Numerical simulation of ion-temperature-gradient-driven modes. Phys. Fluids B 3 (3), 627.CrossRefGoogle Scholar
Zeiler, A., Drake, J.F. & Rogers, B. 1997 Nonlinear reduced Braginskii equations with ion thermal dynamics in toroidal plasma. Phys. Plasmas 4 (6), 2134.CrossRefGoogle Scholar
Zhu, B., Francisquez, M. & Rogers, B.N. 2018 GDB: a global 3D two-fluid model of plasma turbulence and transport in the tokamak edge. Comput. Phys. Commun. 232, 46.CrossRefGoogle Scholar