Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-24T08:49:07.431Z Has data issue: false hasContentIssue false

The dependence of open cylindrical magnetoactive p-Ge and p-Si plasma waveguide mode cutoff frequencies on hole concentrations

Published online by Cambridge University Press:  01 February 2009

L. NICKELSON
Affiliation:
Semiconductor Physics Institute, A. Gostauto 11, LT-01108 Vilnius, Lithuania ([email protected])
S. ASMONTAS
Affiliation:
Semiconductor Physics Institute, A. Gostauto 11, LT-01108 Vilnius, Lithuania ([email protected])
V. MALISAUSKAS
Affiliation:
Electronic Systems Department, Electronics Faculty, Vilnius Gediminas Technical University, Naugarduko 41, LT-03227 Vilnius, Lithuania
R. MARTAVICIUS
Affiliation:
Electronic Systems Department, Electronics Faculty, Vilnius Gediminas Technical University, Naugarduko 41, LT-03227 Vilnius, Lithuania

Abstract

In this article we give the solution of Maxwell's equations for the open circular cylindrical magnetoactive semiconductor plasma (-gyrotropy) waveguides. We describe the method that allowed us to arrive at a dispersion equation for the electrodynamical analyses of open circular cylindrical plasma (OCCP) waveguides. We numerically investigate the main and two higher modes' dispersion characteristics of p-Ge and p-Si waveguides placed in an external constant longitudinal magnetic field at several concentrations of two component hole charge carriers. We analyse the cutoff frequency and other electrodynamical characteristics of helicon modes with the left-handed (e+iϕ) circular polarization. We discover that the cutoff frequencies of the main mode and the working frequency range of OCCP p-Ge and p-Si waveguides are moving continuously towards the direction of higher frequencies when the hole concentration is increasing. We determine that the central frequency of the p-Si plasma waveguide is higher and its broadbandwidth is larger compared with the analogical p-Ge waveguide. We also numerically investigate the helicon mode cutoff frequencies of the infinitive p-Ge and p-Si plasma at several concentrations of two component hole charge carriers. We compare the cutoff frequencies of the helicon modes propagating in the infinite plasma and in the OCCP waveguides.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asmontas, S., Nickelson, L. and Malisauskas, V. 2006 Investigation of magnetized semiconductor and ferrite waveguides. Electron. Electric. Eng. 66 (2), 5661 (in Lithuanian, abstract in English).Google Scholar
Button, K. J. 1984 Microwave ferrite devices: the first ten years. IEEE Trans. Microw. Techniques 32 (9), 10881096.CrossRefGoogle Scholar
Chandler, C. H. 1949 An investigation of dielectric rod as wave guide. J. Appl. Phys. 20 (12), 11881192.CrossRefGoogle Scholar
Clarricoats, P. J. B. 1957 Some properties of circular waveguides containing ferrites. Proc. IEE B 104, 286295.Google Scholar
Dargys, A. and Kundrotas, J. 1994 Handbook on Physical Properties of Ge, Si, GaAs and InP. Vilnius: Science and Encyclopedia Publishers.Google Scholar
Ding, Z. F., Huo, W. G. and Wang, Y. N. 2004 Numerical studies on the polarities of electromagnetic wave modes in a magnetoplasma-filled cylindrical waveguide. J. Plasma Phys. 70 (6), 681697.CrossRefGoogle Scholar
Eroglu, A. and Lee, J. K. 2006 Wave propagation and dispersion characteristics for a nonreciprocal electrically gyrotropic medium. Rep. Prog. Phys. 62, 237260.Google Scholar
Griffiths, D. J. 1999 Introduction to Electrodynamics. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
Gutierrez-Tapia, C. and Arzate-Plata, N. 1997 Propagation constant in a cylindrical waveguide containing a magnitoactive plasma with small transverse dimensions. Rev. Sci. Instrum. J. 68 (9), 34003404.CrossRefGoogle Scholar
Hodara, H. and Cohn, G. I. 1962 Wave propagation in magneto-plasma slab. IRE Transactions on Antennas and Propagation 10 (4), 452459.CrossRefGoogle Scholar
Holmes, D. A., Feucht, D. L. and Jacobs, H. 1964 Microwave interaction with a semiconductor post. Solid-State Electro. 7 (4), 267273.CrossRefGoogle Scholar
Huang, H., Fan, Y., Wu, B., Kong, F. and Kong, J. A. 2007 Surface modes at the interfaces between isotropic media and uniaxial plasma. Rep. Prog. Phys. 76, 114.Google Scholar
Ivanov, S. T. and Nikolaev, N. I. 1999 Magnetic-field effect on wave dispersion in a free semiconductor plasma slab. J. Phys. D: Appl. Phys. 32, 430439.CrossRefGoogle Scholar
Iqbal, S. S. 2003 Novel semiconductor phase shifters for millimeter wave devices. Microw. Opt. Technol. Lett. 39 (4), 300303.CrossRefGoogle Scholar
Jankauskas, Z. and Kvedaras, V. 2007 Electrical field and current distribution in semiconductor plasma in the strong magnetic field. Electron. Electric. Eng. 74 (2), 4144.Google Scholar
Kacenelenbaum, B. Z. 1947 About distribution along infinite dielectric cylinders at low frequencies. Rep. Sci. Acad. USSR. 58 (7), 13171320 (in Russian).Google Scholar
Knishevskaya(Nickelson), L. (Nickelson), L., Tamoshiuniene, M. and Shugurov, V. 1996a Numerical analysis of open rectangular and similar ϵ-gyrotropic semiconductor waveguides. Int. J. Infrared Millimeter Waves 17 (6), 10631069.CrossRefGoogle Scholar
Knishevskaya(Nickelson), L. (Nickelson), L., Mukhametzyanov, F., Puzakov, A., Shugurov, V. and Jakovlev, G. 1986 Wave propagation in open circular longitudinally magnetized ferrite waveguide. Lietuvos fizikos rinkinys 26 (3)298306 (in Russian, abstract in English).Google Scholar
Knishevskaya(Nickelson), L. (Nickelson), L. and Shugurov, V. 1988 Theoretical analysis of the circular longitudinally magnetized layered gyrotropic-dielectric waveguide. Lietuvos fizikos rinkinys 28 (3), 358363 (in Russian, abstract in English).Google Scholar
Knishevskaya(Nickelson), L. (Nickelson), L., Pozhela, K., Tamoshiuniene, M. and Shugurov, V. 1996b Numerical analysis of open circular longitudinally magnetized p-Ge and n-InSb waveguides. Int. J. Infrared and Millimeter Waves 17 (7), 12271234.CrossRefGoogle Scholar
Kong, J. A. 1990 Electromagnetic Wave Theory. New York: John Wiley & Sons, Inc.Google Scholar
Kudrin, A. V., Petrov, E. Yu., Kyriacou, G. A. and Zaboronkova, T. M. 2005 Insulated cylindrical antenna in a magnetoplasma. Rep. Prog. Phys. 53, 135166.Google Scholar
Kuno, H. J. and Hershberger, W. D. 1967 Microwave Faraday effect and propagation in a circular solid-state plasma waveguide. IEEE Trans. Microw. Techniques 15 (12), 661668.CrossRefGoogle Scholar
Li, L. W., Liu, S., Leong, M. S. and Yeo, T.-S. 2001 Circular cylindrical waveguide filled with uniaxial anisotropic media-electromagnetic fields and dyadic Green's functions. IEEE Trans. Microw. Techniques 49 (7), 13611367.Google Scholar
Liu, S., Li, M. S., Leong, M. S. and Yeo, T. S. 2000 Theory of gyroelectric waveguides. Prog. Electromagn. Res. Rep. Prog. Phys. 29, 231259.CrossRefGoogle Scholar
Liubimov, L. A. and Sokolov, V. M. 1963 A gyrotropic dielectric wave guide with a circular cross-section. Izv. VUZ radiotechnika 6 (2), 136142 (in Russian).Google Scholar
Nickelson, L. and Shugurov, V. 2005 Singular Integral Equations' Methods for the Analysis of Microwave Structures. Leiden: VSP Brill.Google Scholar
Palik, E. D. and Furdyna, J. K. 1970 Infrared and microwave magnetoplasma in semiconductors. Rep. Prog. Phys. 33 (12), 11931322.CrossRefGoogle Scholar
Pedersen, N. E. 1969 Propagation of electromagnetic waves in longitudinally magnetized germanium plasma waveguide. I.—Theory. Phys. Stat. Sol. 36 (157), 157163; ibid. II.—Experiment. Phys. Stat. Sol. 36(165), 165173.CrossRefGoogle Scholar
Pozela, Ju. K. 1977 Plasma and Current Instability in Semiconductors. Moscow: Science (in Russian).Google Scholar
Scharer, J., Degeling, A., Borg, G. and Boswell, R. 2002 Measurements of hellicon wave propagation and Ar II emission. J. Phys. Plasmas 9 (9), 37343742.CrossRefGoogle Scholar
Shenggang, L., Dajun, Z., Yang, Y. and Lee, J. K. 1996 Dispersion characteristics of wave propagation along a plasma waveguide in a finite magnetic field. Proceedings 4th Int. Conf. Millimeter Wave and Far Infrared Science and Technology, 12–15 August 1996, 6–12.Google Scholar
Soliman, E. A., Helaly, A. and Megahed, A. 2007 Propagation of electromagnetic waves in planar bounded plasma region. Rep. Prog. Phys. 67, 2537.Google Scholar
Valagiannopoulos, C. A. 2007 Study of an electrically anisotropic cylinder excited magnetically by a straight strip line. Rep. Prog. Phys. 73, 297325.Google Scholar
Waldron, R. A. 1958 Electromagnetic wave propagation in cylindrical waveguides containing gyromagnetic media. J. Br. Inst. Radio Eng. 18, 597733.Google Scholar