Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-02T23:53:39.321Z Has data issue: false hasContentIssue false

Cyclotron harmonic wave propagation and instabilities: I. Perpendicular propagation

Published online by Cambridge University Press:  13 March 2009

J. A. Tataronis
Affiliation:
Institute for Plasma Research, Stanford University Stanford, California
F. W. Crawford
Affiliation:
Institute for Plasma Research, Stanford University Stanford, California

Abstract

Parts I and II of this paper present a comprehensive picture of longitudinal wave propagation in a warm homogeneous magnetoplasma. Part I discusses computed dispersion characteristics for propagation perpendicular to the static magnetic field. For a ring electron velocity distribution it is found that mode coupling and absolute instability can occur. Similar effects are predicted for a spherical shell distribution. The Maxwellian distribution gives rise to stable propagation of undamped waves, and attenuating standing waves. A mixture of ring and Maxwellian distributions can give absolute instability with stronger growth and lower instability thresholds than for the ring distribution alone. Propagation oblique to the static magnetic field will be dealt with in Part II.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baldwin, D. E. & Rowlands, G. 1966 Phys. Fluids 9, 2444CrossRefGoogle Scholar
Bernstein, I. B. 1958 Phys. Rev. 109, 10.Google Scholar
Briggs, R. J. 1964 Electron-Stream Interaction with Plasmas. Cambridge, Mass: M.I.T. Press.CrossRefGoogle Scholar
Buckley, R. 1968 Proc. NATO Advanced Study Institute on Plasma Waves in Space and in the Laboratory. Røros (In Press).Google Scholar
Crawford, F. W. 1968 Paper in A Survey of Phenomena in Ionized Gases. Vienna: IAEA.Google Scholar
Crawford, F. W., Harp, R. S. & Mantei, T. D. 1967 J. Geophys. Res. 72, 57.CrossRefGoogle Scholar
Crawford, F. W., LEE, J. C. & Tataronis, J. A. 1968 Proc. NATO Advanced Study Institute on Plasma Waves in Space and in the Laboratory. Røros (In Press).Google Scholar
Derfler, H. 1961 Proc. 5th Int. Conf. Ioniz. Phen. Gases 2, 1423. Amsterdam: North Holland.Google Scholar
Derfler, H. 1967 Phys. Lett. 24 A, 763.CrossRefGoogle Scholar
Derfler, H. 1969 Proc. 9th Conf. Phen. Ioniz. Gases. 431. Bucharest: Acad. Soc. Rep. Romania.Google Scholar
Ristic, V. M., Self, S. A. & Crawford, F. W. 1969 J. Appl. Phys. (In Press.)Google Scholar
Stix, T. H. 1962 The Theory of Plasma Waves. New York: McGraw-Hill.Google Scholar
Sturrock, P. A. 1958 Phys. Rev. 112, 1488.CrossRefGoogle Scholar
Tataronis, J. A. & Crawford, F. W. 1965 Proc. 7th Int. Conf. Phen. Ioniz. Gases 2, 244. Belgrade: Gradevinska Knjiga.Google Scholar