Published online by Cambridge University Press: 15 February 2002
A single-particle theory is developed to investigate particle acceleration along and across a magnetic field and the generation of an electric field transverse to the magnetic field induced by electromagnetic waves in a magnetized plasma. The almost perpendicularly propagating waves accelerate particles via their Landau and cyclotron damping, and the ratio of parallel and perpendicular drift velocities vs∥/vd can be proved to be proportional to k∥/k⊥. Simultaneously, an intense cross-field electric field E0 = B0×vd/c is generated via the dynamo effect owing to perpendicular particle acceleration to satisfy the generalized Ohm’s law. This means that this cross-field particle drift in a collisionless plasma is identical to E×B drift. It is verified that the transport equations obtained are exactly equivalent to those derived from the θ-dependent quasilinear velocity-space diffusion equation obtained from the Vlasov–Maxwell equations.