Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T11:58:27.023Z Has data issue: false hasContentIssue false

Continuous-in-time approach to flow shear in a linearly implicit local $\delta f$ gyrokinetic code

Published online by Cambridge University Press:  04 May 2021

Nicolas Christen*
Affiliation:
Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3PU, UK
Michael Barnes
Affiliation:
Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3PU, UK
Felix I. Parra
Affiliation:
Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3PU, UK
*
Email address for correspondence: [email protected]

Abstract

A new algorithm for toroidal flow shear in a linearly implicit, local $\delta f$ gyrokinetic code is described. Unlike the current approach followed by a number of codes, it treats flow shear continuously in time. In the linear gyrokinetic equation, time-dependences arising from the presence of flow shear are decomposed in such a way that they can be treated explicitly in time with no stringent constraint on the time step. Flow shear related time dependences in the nonlinear term are taken into account exactly, and time dependences in the quasineutrality equation are interpolated. Test cases validating the continuous-in-time implementation in the code GS2 are presented. Lastly, nonlinear gyrokinetic simulations of a JET discharge illustrate the differences observed in turbulent transport compared with the usual, discrete-in-time approach. The continuous-in-time approach is shown, in some cases, to produce fluxes that converge to a different value than with the discrete approach. The new approach can also lead to substantial computational savings by requiring radially narrower boxes. At fixed box size, the continuous implementation is only modestly slower than the previous, discrete approach.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Artun, M. & Tang, W. M. 1992 Gyrokinetic analysis of ion temperature gradient modes in the presence of sheared flows. Phys. Fluids B 4 (5), 11021114.CrossRefGoogle Scholar
Barnes, M., Parra, F. I., Highcock, E. G., Schekochihin, A. A., Cowley, S. C. & Roach, C. M. 2011 a Turbulent transport in tokamak plasmas with rotational shear. Phys. Rev. Lett. 106, 175004.CrossRefGoogle ScholarPubMed
Barnes, M., Parra, F. I. & Schekochihin, A. A. 2011 b Critically balanced ion temperature gradient turbulence in fusion plasmas. Phys. Rev. Lett. 107, 115003.CrossRefGoogle ScholarPubMed
Beer, M. A., Cowley, S. C. & Hammett, G. W. 1995 Field-aligned coordinates for nonlinear simulations of tokamak turbulence. Phys. Plasmas 2 (7), 26872700.CrossRefGoogle Scholar
Belli, E. A. 2006 Studies of numerical algorithms for gyrokinetics and the effects of shaping on plasma turbulence. PhD thesis, Princeton University.Google Scholar
Candy, J. & Belli, E. A. 2018 Spectral treatment of gyrokinetic shear flow. J. Comput. Phys. 356, 448457.CrossRefGoogle Scholar
Casson, F. J., Peeters, A. G., Camenen, Y., Hornsby, W. A., Snodin, A. P., Strintzi, D. & Szepesi, G. 2009 Anomalous parallel momentum transport due to exb flow shear in a tokamak plasma. Phys. Plasmas 16 (9), 092303.CrossRefGoogle Scholar
Catto, P. J. 1978 Linearized gyro-kinetics. Plasma Phys. 20 (7), 719722.CrossRefGoogle Scholar
Catto, P. J., Bernstein, I. B. & Tessarotto, M. 1987 Ion transport in toroidally rotating tokamak plasmas. Phys. Fluids 30 (9), 27842795.CrossRefGoogle Scholar
Catto, P. J., Rosenbluth, M. N. & Liu, C. S. 1973 Parallel velocity shear instabilities in an inhomogeneous plasma with a sheared magnetic field. Phys. Fluids 16 (10), 17191729.CrossRefGoogle Scholar
Dimits, A. M., Bateman, G., Beer, M. A., Cohen, B. I., Dorland, W., Hammett, G. W., Kim, C., Kinsey, J. E., Kotschenreuther, M., Kritz, A. H., et al. 2000 Comparisons and physics basis of tokamak transport models and turbulence simulations. Phys. Plasmas 7 (3), 969983.CrossRefGoogle Scholar
Dimits, A. M., Williams, T. J., Byers, J. A. & Cohen, B. I. 1996 Scalings of ion-temperature-gradient-driven anomalous transport in tokamaks. Phys. Rev. Lett. 77, 7174.CrossRefGoogle ScholarPubMed
Frieman, E. A. & Chen, L. 1982 Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria. Phys. Fluids 25 (3), 502508.CrossRefGoogle Scholar
Hammett, G. W., Dorland, W., Loureiro, N. F. & Tatsuno, T. 2006 Implementation of large scale $\boldsymbol {E}\times \boldsymbol {B}$ shear flow in the gs2 gyrokinetic turbulence code. In Poster presented at the DPP meeting of the American Physical Society.Google Scholar
Jenko, F., Dorland, W., Kotschenreuther, M. & Rogers, B. N. 2000 Electron temperature gradient driven turbulence. Phys. Plasmas 7 (5), 19041910.CrossRefGoogle Scholar
Kotschenreuther, M., Rewoldt, G. & Tang, W. M. 1995 Comparison of initial value and eigenvalue codes for kinetic toroidal plasma instabilities. Comput. Phys. Commun. 88 (2), 128140.CrossRefGoogle Scholar
Mantica, P., Strintzi, D., Tala, T., Giroud, C., Johnson, T., Leggate, H., Lerche, E., Loarer, T., Peeters, A. G., Salmi, A., et al. 2009 Experimental study of the ion critical-gradient length and stiffness level and the impact of rotation in the jet tokamak. Phys. Rev. Lett. 102, 175002.CrossRefGoogle ScholarPubMed
McKee, G. R., Gohil, P., Schlossberg, D. J., Boedo, J. A., Burrell, K. H., de Grassie, J. S., Groebner, R. J., Moyer, R. A., Petty, C. C., Rhodes, T. L., et al. 2009 Dependence of the l- to h-mode power threshold on toroidal rotation and the link to edge turbulence dynamics. Nucl. Fusion 49 (11), 115016.CrossRefGoogle Scholar
McMillan, B. F., Ball, J. & Brunner, S. 2019 Simulating background shear flow in local gyrokinetic simulations. Plasma Phys. Control. Fusion 61 (5), 055006.CrossRefGoogle Scholar
Miller, R. L., Chu, M. S., Greene, J. M., Lin-Liu, Y. R. & Waltz, R. E. 1998 Noncircular, finite aspect ratio, local equilibrium model. Phys. Plasmas 5 (4), 973978.CrossRefGoogle Scholar
Peeters, A. G. & Angioni, C. 2005 Linear gyrokinetic calculations of toroidal momentum transport in a tokamak due to the ion temperature gradient mode. Phys. Plasmas 12 (7), 072515.CrossRefGoogle Scholar
Peeters, A. G., Camenen, Y., Casson, F. J., Hornsby, W. A., Snodin, A. P., Strintzi, D. & Szepesi, G. 2009 The nonlinear gyro-kinetic flux tube code gkw. Comput. Phys. Commun. 180 (12), 26502672. 40 YEARS OF CPC: A celebratory issue focused on quality software for high performance, grid and novel computing architectures.CrossRefGoogle Scholar
Siren, P., Varje, J., Weisen, H. & Giacomelli, L. 2019 Role of JETPEAK database in validation of synthetic neutron camera diagnostics and ASCOT- AFSI fast particle and fusion product calculation chain in JET. J. Instrum. 14 (11), C11013C11013.CrossRefGoogle Scholar
Sugama, H. & Horton, W. 1998 Nonlinear electromagnetic gyrokinetic equation for plasmas with large mean flows. Phys. Plasmas 5 (7), 25602573.CrossRefGoogle Scholar
Synakowski, E. J., Batha, S. H., Beer, M. A., Bell, M. G., Bell, R. E., Budny, R. V., Bush, C. E., Efthimion, P. C., Hammett, G. W., Hahm, T. S., et al. 1997 Roles of electric field shear and shafranov shift in sustaining high confinement in enhanced reversed shear plasmas on the tftr tokamak. Phys. Rev. Lett. 78, 29722975.CrossRefGoogle Scholar
Waelbroeck, F. L. & Chen, L. 1991 Ballooning instabilities in tokamaks with sheared toroidal flows. Phys. Fluids B 3 (3), 601610.CrossRefGoogle Scholar
Waltz, R. E., Dewar, R. L. & Garbet, X. 1998 Theory and simulation of rotational shear stabilization of turbulence. Phys. Plasmas 5 (5), 17841792.CrossRefGoogle Scholar
Waltz, R. E., Kerbel, G. D., Milovich, J. & Hammett, G. W. 1995 Advances in the simulation of toroidal gyro–landau fluid model turbulence. Phys. Plasmas 2 (6), 24082416.CrossRefGoogle Scholar
Waltz, R. E., Staebler, G. M., Candy, J. & Hinton, F. L. 2007 Gyrokinetic theory and simulation of angular momentum transport. Phys. Plasmas 14 (12), 122507.CrossRefGoogle Scholar