Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T04:14:56.475Z Has data issue: false hasContentIssue false

Comparison of wave propagation in the stationary and moving plasma: motion and wave propagation along the magnetic field

Published online by Cambridge University Press:  13 March 2009

D. N. Srivastava
Affiliation:
Electronics Division, Bhabha Atomic Research Centre, Trombay, Bombay−85

Abstract

The three important aspects of wave propagation in a stationary and a moving plasma (namely frequency, polarization and dispersion) are compared, taking the phase refractive index of the wave as the independent variable. Wave propagation and the motion of the plasma are taken to be along the magnetic field. The plasma is assumed to consist of one species only, and the effect of collisions is neglected. Wave propagation in a moving plasma has been shown to possess several important features, such as the absence of cyclotron resonance, reversal of the sense of polarization when the phase velocity becomes equal to the plasma velocity, and the existence of backward waves for very small and very large phase velocities.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bailey, V. A. 1948 Australian J. Sci. Res. A1, 351.Google Scholar
Chawla, B. R., Rao, S. S. & Unz, H. 1966 J. Appl. Phys. 37, 3563.CrossRefGoogle Scholar
Chawla, B. R. & Unz, H. 1966 a Radio Sci. 1, 1055.CrossRefGoogle Scholar
Chawla, B. R. & Unz, H. 1966 b IEEE Trans. Ant. Prop. AP14, 407.CrossRefGoogle Scholar
Chawla, B. R. & Unz, H. 1966 c Proc. IEEE, 54, 1103.CrossRefGoogle Scholar
Chawla, B. R. & Unz, H. 1966 d Proc. IEEE, 54, 332.CrossRefGoogle Scholar
Chawla, B. R. & Unz, H. 1967 a Electronics Lett. 3, 244.CrossRefGoogle Scholar
Chawla, B. R. & Unz, H. 1967 b IEEE Trans. Ant. Prop. AP15, 324.CrossRefGoogle Scholar
Chawla, B. R. & Unz, H. 1967 c Proc. IEEE, 55, 1741.CrossRefGoogle Scholar
Chawla, B. R. & Unz, H. 1971 Electromagnetic Waves in Moving Magnetoplasmas. The University Press of Kansas.Google Scholar
Collin, R. E. 1960 Field Theory of Guided Waves. McGraw-Hill.Google Scholar
Holt, E. H. & Haskell, R. E. 1965 Foundations of Plasma Dynamics. Macmillan.Google Scholar
Kalluri, D. 1970 Proc. IEEE, 58, 278.CrossRefGoogle Scholar
Kunkel, W. B. 1966 Plasma Physics in Theory and Application. McGraw-Hill.Google Scholar
Ratcliffe, J. A. 1959 The Magneto-ionic Theory and its Applications to the Ionosphere. Cambridge University Press.Google Scholar
Scarf, F. L. 1961 Am. J. Phys. 29, 101.CrossRefGoogle Scholar
Shercliff, J. A. 1965 A Text Book of Magnetohydrodynamics. Pergamon.Google Scholar
Sidhu, D. P. & Unz, H. 1968 Trans. Kansas Acad. Sci. 70, 432.CrossRefGoogle Scholar
Steele, M. C. & Vural, B. 1969 Wave Interactions In Solid State Plasmas. McGraw-Hill.Google Scholar
Tai, C. T. 1964 Proc. IEEE, 52, 685.CrossRefGoogle Scholar
Tai, C. T. 1965 a Radio Sci. J. Res. NBS, 69D, 401.Google Scholar
Tai, C. T. 1965 b IEEE Trans. Ant. Prop. AP13, 322.CrossRefGoogle Scholar
Tai, C. T. 1966 IEEE International Convention Record, Part 7, 148.Google Scholar
Unz, H. 1962 IRE Trans. Ant. Prop. AP10, 459.CrossRefGoogle Scholar
Unz, H. 1963 a J. Atmos. Terrst. Phys. 25, 281.CrossRefGoogle Scholar
Unz, H. 1963 b IEEE Trans. Ant. Prop. AP11, 573.CrossRefGoogle Scholar
Unz, H. 1966 a Phys. Rev. 146, 92.CrossRefGoogle Scholar
Unz, H. 1966 b Radio Sci. 1, 325.CrossRefGoogle Scholar
Unz, H. 1967 IEEE Trans. Microwave Theory and Techniques, 15, 432.CrossRefGoogle Scholar
Unz, H. 1968 Radio Sci. 3, 295.CrossRefGoogle Scholar