Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-18T08:25:30.866Z Has data issue: false hasContentIssue false

A comparative study of the filamentation and Weibel instabilities and their cumulative effect. II. Weakly relativistic beams

Published online by Cambridge University Press:  01 August 2009

A. STOCKEM
Affiliation:
Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum, Germany ([email protected])
M. LAZAR
Affiliation:
Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum, Germany ([email protected]) Center for Plasma Astrophysics, Celestijnenlaan 200B, 3001 Leuven, Belgium
P. K. SHUKLA
Affiliation:
Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum, Germany ([email protected])
A. SMOLYAKOV
Affiliation:
Department of Physics and Engineering Physics, University of Saskatchewan, 116 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada

Abstract

Counterstreaming plasma systems with intrinsic temperature anisotropies are unstable against the excitation of Weibel-type instabilities, namely, filamentation and Weibel instabilities, and their cumulative effect. Here, the analysis is extended to counterstreaming plasmas with weakly relativistic bulk velocities, while the thermal velocities are still considered to be non-relativistic. Such plasma systems are relevant for fusion plasma experiments and the more violent astrophysical phenomena, such as jets in gamma-ray burst sources. Simple analytical forms of the dispersion relations are derived in the limit of a small transverse temperature or a large temperature anisotropy of the beams. The aperiodic growing solutions are plotted systematically for the representative cases chosen in Paper I (Lazar et al. 2009 J. Plasma Phys. 75, in press). In the limit of slow non-relativistic plasma flows, the numerical solutions fit well with those obtained in Paper I, but for weakly relativistic streams an important deviation is found.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Lazar, M., Smolyakov, A., Schlickeiser, R. and Shukla, P. K. 2009 J. Plasma Phys. 75, in press.CrossRefGoogle Scholar
[2]Weibel, E. S. 1959 Phys. Rev. Lett. 2, 83.CrossRefGoogle Scholar
[3]Fried, B. D. 1959 Phys. Fluids 2, 337.CrossRefGoogle Scholar
[4]Kazimura, Y., Sakai, J. I., Neubert, T. and Bulanov, S. V. 1998 Astrophys. J. 498, L183.CrossRefGoogle Scholar
[5]Medvedev, M. and Loeb, A. 1999 Astrophys. J. 526, 697.Google Scholar
[6]Gruzinov, A. 2001 Astrophys. J. Lett. 563, L15.CrossRefGoogle Scholar
[7]Schlickeiser, R. and Shukla, P. K. 2003 Astrophys. J. 599, L57.CrossRefGoogle Scholar
[8]Okabe, N. and Hattori, M. 2003 Astrophys. J. 599, 964.CrossRefGoogle Scholar
[9]Nishikawa, K.-I. et al. , 2003 Astrophys. J. 595, 555.CrossRefGoogle Scholar
[10]Hededal, C. B., Haugbolle, T., Frederiksen, F. J. T. and Nordlund, A. 2004 Astrophys. J. 617, L107.CrossRefGoogle Scholar
[11]Silva, L. O., Fonseca, R. A., Tonge, J. W., Mori, W. B. and Dawson, J. M. 2002 Phys. Plasmas 9, 2458.CrossRefGoogle Scholar
[12]Startsvev, E. A. and Davidson, R. C. 2003 Phys. Plasmas 10, 4829.CrossRefGoogle Scholar
[13]Bret, A., Firpo, M.-C. and Deutsch, C. 2004 Phys. Rev. E 70, 046401.Google Scholar
[14]Bret, A., Firpo, M.-C. and Deutsch, C. 2005 Phys. Rev. E 72, 016403.Google Scholar
[15]Bret, A. and Deutsch, C. 2006 Phys. Plasmas 23, 022110.CrossRefGoogle Scholar
[16]Lazar, M., Schlickeiser, R. and Shukla, P. K. 2006 Phys. Plasmas 13, 102107.CrossRefGoogle Scholar
[17]Stockem, A. and Lazar, M. 2008 Phys. Plasmas 15, 014501.CrossRefGoogle Scholar
[18]Achterberg, A. and Wiersma, J. 2007 Astron. Astrophys. 475, 1.CrossRefGoogle Scholar
[19]Schaefer-Rolffs, U. and Schlickeiser, R. 2006 Phys. Plasmas 13, 2107.Google Scholar
[20]Stockem, A., Lerche, I. and Schlickeiser, R. 2006 Astrophys. J. 651, 584.CrossRefGoogle Scholar
[21]Fujita, Y. and Kato, T. N. 2005 Mon. Not. R. Astron. Soc. 364, 247.CrossRefGoogle Scholar
[22]Morse, R. L. and Nielsen, C. W. 1971 Phys. Fluids 14, 830.CrossRefGoogle Scholar
[23]Silva, L. O., Fonseca, R. A., Tonge, J. W., Dawson, J. M., Mori, W. B. and Medvedev, M. V. 2003 Astrophys. J. 596, L121.CrossRefGoogle Scholar
[24]Stockem, A., Dieckmann, M. E. and Schlickeiser, R. 2008 Plasma Phys. Control. Fusion 50, 025002.CrossRefGoogle Scholar