Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T18:52:36.261Z Has data issue: false hasContentIssue false

Collisionless trapped-electron-mode turbulence and transport in fluid descriptions

Published online by Cambridge University Press:  01 October 2007

H. NORDMAN
Affiliation:
Department of Radio and Space Science, Chalmers University of Technology, Euratom-VR Association, SE-412 96 Göteborg, Sweden ([email protected])
P. STRAND
Affiliation:
Department of Radio and Space Science, Chalmers University of Technology, Euratom-VR Association, SE-412 96 Göteborg, Sweden ([email protected])
X. GARBET
Affiliation:
Association Euratom-CEA, CEA/DSM/DRFC CEA-Cadarache, France

Abstract

A study of particle and electron heat transport in tokamaks due to trapped-electron-mode (TEM) turbulence is presented. The study is based on the Weiland fluid model for ion-temperature-gradient (ITG) modes and TEMs, complemented and compared with a trapped electron fluid treatment which retains contributions from the weakly trapped electrons. The dependence of the fluid transport coefficients on magnetic shear and other plasma parameters is discussed and compared with results obtained from nonlinear gyrokinetic simulations. Inward (pinch) flows of particles and heat, previously reported for the coupled ITG–TEM system, are also found in the TEM dominated regime.

Type
Papers
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Liewer, P. C. 1985 Nucl. Fusion 25, 543.CrossRefGoogle Scholar
[2]Coppi, B. and Pegoraro, F. 1977 Nucl. Fusion 17, 969.Google Scholar
[3]Liu, C. S. 1969 Phys. Fluids 12, 1489.CrossRefGoogle Scholar
[4]Strand, P., Nordman, H., Weiland, J. and Christiansen, J. 1998 Nucl. Fusion 38, 545.CrossRefGoogle Scholar
[5]Bateman, G., Kritz, A. H., Kinsey, J., Redd, A. and Weiland, J. 1998 Phys. Plasmas 5, 1793.CrossRefGoogle Scholar
[6]Parail, V. et al. 1997 Nucl. Fusion 37, 481.CrossRefGoogle Scholar
[7]Dimits, A. M. et al. 2000 Phys. Plasmas 7, 969.CrossRefGoogle Scholar
[8]Dannert, T. and Jenko, F. 2005 Phys. Plasmas 12, 072309.CrossRefGoogle Scholar
[9]Ernst, D. R. et al. and the Alcator C-Mod Group. 2004 Phys. Plasmas 11, 2637.CrossRefGoogle Scholar
[10]Peeters, A. G., Angioni, C., Apostoliceanu, M., Jenko, F., Ryter, F. and the ASDEX Upgrade Team. 2005 Phys. Plasmas 12, 022505.CrossRefGoogle Scholar
[11]Ryter, F. et al. and the ASDEX Upgrade Team. 2003 Nucl. Fusion 43(11), 13961404.CrossRefGoogle Scholar
[12]Angioni, C., Peeters, A. G., Apostolicearu, M., Jenko, F., Ryter, F. and the ASDFX Update Team. 2005 Phys. Plasmas 12, 040701.CrossRefGoogle Scholar
[13]Weiland, J. 2000 Collective Modes in Inhomogeneous Plasmas. Bristol: IOP.Google Scholar
[14]Garbet, X., Garzotti, L., Mantica, P., Nordman, H., Valovic, M. and Weisen, H. 2003 Phys. Rev. Lett. 91, 035001-1.Google Scholar
[15]Nordman, H., Weiland, J. and Jarmen, A. 1990 Nucl. Fusion 30, 983.CrossRefGoogle Scholar
[16]Baranov, Yu. F. et al. 2004 Plasma Phys. Control. Fusion 46, 1181.Google Scholar
[17]Eriksson, A., Garzotti, L. and Weiland, J.Private communication.Google Scholar
[18]Weiland, J. and Holod, I. 2005 Phys. Plasmas 12, 012505-1.Google Scholar