Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T18:14:27.107Z Has data issue: false hasContentIssue false

Classical Vlasov plasma description through quantum numerical methods

Published online by Cambridge University Press:  13 March 2009

P. Bertrand
Affiliation:
Laboratoire de Physique théorique, Université de Nancy I, C.O. 140, 54037 Nancy
Nguyen van Tuan
Affiliation:
Laboratoire de Physique théorique, Université de Nancy I, C.O. 140, 54037 Nancy
M. Gros
Affiliation:
Laboratoire de Physique théorique, Université de Nancy I, C.O. 140, 54037 Nancy
B. Izrar
Affiliation:
Laboratoire de Physique théorique, Université de Nancy I, C.O. 140, 54037 Nancy
M. Feix
Affiliation:
CRPE/CNRS/CNET Univorsité d'Orléans, 45045 Orléans Cédex
J. Gutierrez
Affiliation:
CRPE/CNRS/CNET Univorsité d'Orléans, 45045 Orléans Cédex

Abstract

The Schrödinger equation describes the motion of a particle in a statistical sense. It consequently possesses the two main properties of the Vlasov equation (dynamic and statistic) and can replace this last equation provided we take sophisticated initial conditions. The scheme must be considered as a new attempt to discretize intelligently the amount of information contained in the phase space distribution and to stop, without destroying it, the flow of information which usually goes to high wavenumbers in velocity space. The method is applied to the breaking of highly nonlinear waves in a cold plasma (usually treated by the Lagrangian method) and to double beam instability. It is shown that such an Eulerian scheme works quite well with a much smaller number of discretized functions than are required in the regular Fourier—Fourier or Fourier-Hermite methods. The central point is the introduction of the phase space Wigner distribution function which is a useful mathematical tool in spite of its poor physical properties.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Armstrong, T. P. 1967 Phys. Fluids, 10, 1269.CrossRefGoogle Scholar
Armstrong, T. P. & Nielson, C. W. 1970 Phys. Fluids, 13, 1880.CrossRefGoogle Scholar
Berk, H. L. & Roberts, K. V. 1967 Phys. Fluids, 10, 1595.CrossRefGoogle Scholar
Bertrand, P., Gros, M. & Baumann, G. 1976 Phys. Fluids, 19, 1183.CrossRefGoogle Scholar
Cheng, C. Z. & Knorr, G. 1976 J. Comput. Phys. 22, 330.CrossRefGoogle Scholar
Dawson, J. 1959 Phys. Rev. 113, 383.CrossRefGoogle Scholar
Dawson, J.. 1962 Phys. Fluids, 5, 445.CrossRefGoogle Scholar
Denavit, J. & Kruer, W. L. 1971 Phys. Fluids, 14, 1782.CrossRefGoogle Scholar
Felx, M. R. 1970 Proceedings of the Fourth Conference on Numerical Simulation of Plasma (Naval Research Laboratory, Washington), p. 732.Google Scholar
Gazdag, J. 1976 J. Comput. Phys. 20, 196.CrossRefGoogle Scholar
Grant, F. C. & Feix, M. R. 1967 Phys. Fluids, 10, 696.CrossRefGoogle Scholar
Gros, M., Bertrand, P. & Baumann, G. 1978 J. Plasma Phys. 20, 465.CrossRefGoogle Scholar
Joyce, G., Knorr, G. & Meler, H. K. 1971 J. Comput. Phys. 8, 53.CrossRefGoogle Scholar
Kalman, G. 1960 Ann. Phys. 10, 1.CrossRefGoogle Scholar
Knorr, G. 1967 Z. Naturforschung, 18 a, 1304.CrossRefGoogle Scholar
Konyukov, M. V. 1960 Soviet Phys. JETP, 37, 570.Google Scholar
Lynden-Bell, D. 1967 Monthly Notices of the R.A.S. 136, 101.CrossRefGoogle Scholar
Moyal, J. E. 1949 Proceedings of the Cambridge Philosophical Society, 45, 99.CrossRefGoogle Scholar
Salu, Y. & Knorr, G. 1975 J. Comput. Phys. 17, 68.CrossRefGoogle Scholar
Shoucri, M.M & Gagné, R. R. J. 1977 J. Comput. Phys. 24, 445.Google Scholar