Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T23:18:01.240Z Has data issue: false hasContentIssue false

Cavity-hollow cathode-sputtering source for titanium films

Published online by Cambridge University Press:  22 January 2010

R. SCHRITTWIESER
Affiliation:
Institute for Ion Physics and Applied Physics, University of Innsbruck, Austria ([email protected])
C. IONITA
Affiliation:
Institute for Ion Physics and Applied Physics, University of Innsbruck, Austria ([email protected])
A. MURAWSKI
Affiliation:
Institute for Ion Physics and Applied Physics, University of Innsbruck, Austria ([email protected])
C. MASZL
Affiliation:
Institute for Ion Physics and Applied Physics, University of Innsbruck, Austria ([email protected])
M. ASANDULESA
Affiliation:
Faculty of Physics, Alexandru-Ioan-Cuza University of Iasi, Iasi, Romania
A. NASTUTA
Affiliation:
Faculty of Physics, Alexandru-Ioan-Cuza University of Iasi, Iasi, Romania
G. RUSU
Affiliation:
Faculty of Physics, Alexandru-Ioan-Cuza University of Iasi, Iasi, Romania
C. DOUAT
Affiliation:
UFR des Sciences, Université Paris Sud 11, Orsay Cedex, France
S. B. OLENICI
Affiliation:
ISAS – Institute for Analytical Sciences, Dortmund, Germany
I. VOJVODIC
Affiliation:
Faculty of Natural Sciences and Mathematics, University of Montenegro, Podgorica, Montenegro
M. DOBROMIR
Affiliation:
Faculty of Physics, Alexandru-Ioan-Cuza University of Iasi, Iasi, Romania
D. LUCA
Affiliation:
Faculty of Physics, Alexandru-Ioan-Cuza University of Iasi, Iasi, Romania
S. JAKSCH
Affiliation:
Institute for Ion Physics and Applied Physics, University of Innsbruck, Austria ([email protected])
P. SCHEIER
Affiliation:
Institute for Ion Physics and Applied Physics, University of Innsbruck, Austria ([email protected])

Abstract

A cavity-hollow cathode was investigated as low-cost sputtering source for titanium. An argon discharge is produced inside a hollow cathode consisting of two specifically formed disks of titanium. An additional cavity further enhances the pendulum effect of the electrons. Measurements with small Langmuir probes yielded evidence for the formation of a space charge double layer above the cathode. The sputtered atoms form negatively charged clusters. After further acceleration by the double layer the clusters impinge on the substrates. Titanium thin films were produced on highly oriented pyrolytic graphite. The films were investigated by a scanning tunnel microscope and X-ray photoelectron spectroscopy.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Sullivan, J. V. and Walsh, A. 1965 Spectrochimica Acta 21, 721726.CrossRefGoogle Scholar
[2]Baude, S., Broekaert, J. A. C., Delfosse, D., Jakubowski, N., Fuechtjohann, L., Orellana-Velado, N. G., Pereiro, R. and Sanz-Medel, A. 2000 J. Anal. At. Spectrom. 15, 15161525.CrossRefGoogle Scholar
[3]Xenoulis, A. C., Doukellis, G., Tsouris, P., Karydas, A., Potiriadis, C., Katsanos, A. A. and Tsakalakos, Th. 1998 Vacuum 51, 357362.CrossRefGoogle Scholar
[4]Burdovitsin, V. A. and Oks, E. M. 2008 Laser Particle Beams 26, 619635.CrossRefGoogle Scholar
[5]Gu, X., Meng, L., Yan, Y. and Sun, Y. 2009 J. Infrared Milli. Terahz. Waves 30, 10831091.CrossRefGoogle Scholar
[6]Fearn, D. G. 1978 J. Spacecraft Rockets 15, 154161.CrossRefGoogle Scholar
[7]Gavrilov, N., Mesyats, G., Radkovski, G. and Bersenev, V. 1997 Surf. Coat. Technol. 96, 8188.CrossRefGoogle Scholar
[8]Ishii, K., Amano, K. and Hamakake, H. 1999 J. Vac. Sci. Technol. A 17, 310313.CrossRefGoogle Scholar
[9]Oks, E. M., Anders, A. and Brown, I. G. 2004 Rev. Sci. Instrum. 75, 10301033.CrossRefGoogle Scholar
[10]Hubička, Z. et al. 2008 Contrib. Plasma Phys. 48, 515520.CrossRefGoogle Scholar
[11]Pahl, M., Howorka, F., Märk, T. D., Lindinger, W. and Helm, H. 1973 Acta Phys. Austriaca 37, 101121.Google Scholar
[12]Bardos, L. 1996 Surf. Coat. Techn. 86–87, 648656.CrossRefGoogle Scholar
[13]Zhechev, D., Zhemenik, V. I., Tileva, S., Mishinsky, G. V. and Pyrvanova, N. 2003 Nucl. Instr. Method. Phys. Res. B 204, 387391.CrossRefGoogle Scholar
[14]Kazemeini, M. H., Berezin, A. A. and Fukuhara, N. 2000 Thin Solid Films 372, 7077.CrossRefGoogle Scholar
[15]Kazemeini, M. H. and Berezin, A. A. 2000 J Vacuum Sci. Techn. A 18, 29082913.CrossRefGoogle Scholar
[16]Balan, P. C., Apetrei, R., Luca, D., Ionita, C., Schrittwieser, R. and Popa, G. 2005 J. Optoel. Adv. Mater. 7, 24592464.Google Scholar
[17]Guruvenket, S. and Rao, G. M. 2002 J. Vac. Sci. Technol. A 20, 678682.CrossRefGoogle Scholar
[18]Apetrei, R., Alexandroaei, D., Luca, D., Balan, P., Ionita, C., Schrittwieser, R. and Popa, G. 2006 Jpn. J. Appl. Phys. 45, 81288131.CrossRefGoogle Scholar
[19]Luca, D. 1996 Rom. Reports in Phys. 47, 768796.Google Scholar
[20]Apetrei, R., Alexandroaei, D., Luca, D., Balan, P., Ionita, C., Schrittwieser, R. and Popa, G. 2006 Jpn. J. Appl. Phys. 45, 81328135.CrossRefGoogle Scholar
[21]Qing, Ma and Rosenberg, R. A. 1999 Phys. Rev. B 60, 28272832.Google Scholar
[22]Siebenförcher, A. and Schrittwieser, R. 1996 Rev. Sci. Instrum. 67, 849850.CrossRefGoogle Scholar
[23]Schrittwieser, R., Ionita, C., Balan, P. C., Cabral, J. A., Figueiredo, H. F. C., Pohoata, V. and Varandas, C. 2001 Contrib. Plasma Phys. 41, 494503.3.0.CO;2-X>CrossRefGoogle Scholar
[24]Huddelstone, R. H. and Leonard, S. L. 1965 Plasma Diagnostic Techniques. New York, London: Academic Press.Google Scholar
[25]Druyvesteyn, M. J. 1930 Z. Phys. 64, 781798.CrossRefGoogle Scholar
[26]Allen, J. A. 1978 J. Phys. D: Appl. Phys. 11, L35L36.CrossRefGoogle Scholar
[27]Popov, T. K., Dimitrova, M., Dias, F. M., Tsaneva, V. N., Stelmashenko, N. A., Blamire, M. G. and Barber, Z. H. 2006 J. Phys.: Conf. Series 44, 6069.Google Scholar
[28]Schrittwieser, R. (Ed.) 1993 Proc. of Fourth Symp. on Double Layers and Other Nonlinear Potential Structures in Plasmas (Innsbruck, Austria, 1992). Singapore: World Scientific Publishing Company, p. 498.CrossRefGoogle Scholar
[29]Vojvodic, I., Olenici, S. B., Ionita, C., Jaksch, S., Balan, P., Rasul, B., Scheier, P. and Schrittwieser, R. 2007 Titanium thin films sputtered by a cavity hollow cathode discharge on highly oriented pyrolytic graphite In: Proc. XXVIIIth Int. Conf. Phenomena in Ionized Gases (eds. Schmidt, J., Simek, M., Pekarek, S. and Prukner, V.). Prague, Czech Republic, pp. 657660.Google Scholar
[30]Linsmeier, C., private communication.Google Scholar
[31]Schrittwieser, R., Ionita, C., Luca, D., Alexandroaei, D., Apetrei, R., Anita, V., Popa, G., Balan, P. C., Olenici, S. B. and Murawski, A. 2007 In: 16th Symp. Appl. Plasma Proc.—SAPP 2007. Inv. Lect. IL10, Book of Abstracts, Podbanské, Slovakia, pp. 7578.Google Scholar
[32]Langmuir, I. 1929 Phys. Rev. 33, 954989.CrossRefGoogle Scholar
[33]Murawski, A. 2006 Characterization of a cavity-hollow cathode as a sputter source for various materials. Master's Thesis, University of Innsbruck, Austria.Google Scholar