Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-16T03:24:52.421Z Has data issue: false hasContentIssue false

A canonical view on particle acceleration by electromagnetic pulses

Published online by Cambridge University Press:  18 March 2022

F. Russman*
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970 Porto Alegre, RS, Brasil
S. Marini*
Affiliation:
LSI, CEA/DRF/IRAMIS, CNRS, École Polytechnique, Institut Polytechnique de Paris, F-91120 Palaiseau, France LULI, Sorbonne Université, CEA, CNRS, École Polytechnique, Institut Polytechnique de Paris, F-75252 Paris, France
F.B. Rizzato*
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970 Porto Alegre, RS, Brasil
*
Email addresses for correspondence: [email protected], [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected], [email protected]

Abstract

In the present work we investigate the dynamics of electrons under the action of wave packets of high-frequency electromagnetic carrier waves. When the group velocities of the packets are subluminal, electrons can be efficiently accelerated. We show that the whole process can be described by an accurate ponderomotive canonical formalism that includes relevant extensions of the original ponderomotive approach applied to carriers moving at the speed of light. Single-particle simulations validate our analytical approach and show that extended canonical methods provide better agreement with numerics than previous investigations. In particular, we obtain a precise relationship between the wave amplitude and group velocity for optimum acceleration of initially stationary targets.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Almansa, I., Russman, F.B., Marini, S., Peter, E., de Oliveira, G.I., Cairns, R.A. & Rizzato, F.B. 2019 Ponderomotive and resonant effects in the acceleration of particles by electromagnetic modes. Phys. Plasmas 26 (3), 033105.CrossRefGoogle Scholar
Burton, D.A., Cairns, R.A., Ersfeld, B., Noble, A., Yoffe, S. & Jaroszynski, D.A. 2017 Observations on the ponderomotive force. In Relativistic Plasma Waves and Particle Beams as Coherent and Incoherent Radiation Sources II (ed. Jaroszynski, D.A.). International Society for Optics and Photonics. https://spie.org/Publications/Proceedings/Paper/10.1117/12.2270542?SSO=1Google Scholar
Di Piazza, A. 2008 Exact solution of the Landau–Lifshitz equation in a plane wave. Lett. Math. Phys. 83, 305.CrossRefGoogle Scholar
Elmore, W.C. & Heald, M.A. 1985 Physics of Waves. Dover.Google Scholar
Esarey, E., Sprangle, P., Pilloff, M. & Krall, J. 1995 Theory and group velocity of ultrashort, tightly focused laser pulses. J. Opt. Soc. Am. B 12 (9), 1695.CrossRefGoogle Scholar
Fedorov, V.Y. & Tzortzakis, S. 2020 Powerful terahertz waves from long-wavelength infrared laser filaments. Light: Sci. Applics. 9, 196.CrossRefGoogle ScholarPubMed
Goldstein, H. 1980 Classical Mechanics. Addison-Wesley.Google Scholar
Harvey, C., Heinzl, T. & Marklund, M. 2011 Symmetry breaking from radiation reaction in ultra-intense laser fields. Phys. Rev. D 84, 116005.CrossRefGoogle Scholar
Landau, L. & Lifschitz, E. 1965 Théorie du champ. Mir.Google Scholar
Lemos, N., Cardoso, L., Geada, J., Figueira, G., Albert, F. & Dias, J.M. 2018 Guiding of laser pulses in plasma waveguides created by linearly-polarized femtosecond laser pulses. Sci. Rep. 8, 3165.CrossRefGoogle ScholarPubMed
Liu, C.S. & Tripathi, V.K. 2005 Ponderomotive effect on electron acceleration by plasma wave and betatron resonance in short pulse laser. Phys. Plasmas 12, 043103.CrossRefGoogle Scholar
Macchi, A. 1992 A Superintense Laser-Plasma Interaction Theory Primer. Springer.Google Scholar
Mendonça, J.T. 2001 Theory of Photon Acceleration. Series in Plasma Physics, vol. 218. IOP.CrossRefGoogle Scholar
Mulser, P. & Bauer, D. 2010 High Power Laser-Matter Interaction. Springer.CrossRefGoogle Scholar
Papadopoulos, D.N., Zou, J.P., Le Blanc, C., Chériaux, G., Georges, P., Druon, F., Mennerat, G., Ramirez, P., Martin, L., Fréneaux, A., et al. 2016 The apollon $10$ pw laser: experimental and theoretical investigation of the temporal characteristics. High Power Laser Sci. Engng 4, e34.CrossRefGoogle Scholar
Peng, H., Riconda, C., Grech, M, Zhou, C.-T. & Weber, S. 2020 Dynamical aspects of plasma gratings driven by a static ponderomotive potential. Plasma Phys. Control. Fusion 62 (11), 115015.CrossRefGoogle Scholar
Ralph, J.E., Marsh, K.A., Pak, A.E., Lu, W., Clayton, C.E., Fang, F., Mori, W.B. & Joshi, C. 2009 Self-guiding of ultrashort, relativistically intense laser pulses through underdense plasmas in the blowout regime. Phys. Rev. Lett. 102, 175003.CrossRefGoogle ScholarPubMed
Robinson, A.P.L. 2021 A critical analysis of the ‘ponderomotive snowplow’ concept in direct laser acceleration of electrons. Plasma Phys. Control. Fusion 93 (6), 064003.CrossRefGoogle Scholar
Ruiz, D.E. & Dodin, I.Y. 2017 Ponderomotive dynamics of waves in quasiperiodically modulated media. Phys. Rev. A 95, 032114.CrossRefGoogle Scholar
Russman, F., Almansa, I., Peter, E., Marini, S. & Rizzato, F.B. 2020 Non-resonant acceleration of charged particles driven by the associated effects of the radiation reaction. J. Plasma Phys. 86 (5), 905860513.CrossRefGoogle Scholar
Sazegari, V., Mirzaie, M. & Shokri, B. 2006 Ponderomotive acceleration of electrons in the interaction of arbitrarily polarized laser pulse with a tenuous plasma. Phys. Plasmas 13, 033102.CrossRefGoogle Scholar
Shukla, P.K., Rao, N.N., Yu, M.Y.L. & Tsintsadze, N.L. 1986 Relativistic nonlinear effects in plasmas. Phys. Rep. 138, 1149.CrossRefGoogle Scholar
Smorenburg, P.W., Kamp, L.P.J., Geloni, G.A. & Luiten, O.J. 2010 Coherently enhanced radiation reaction effects in laser-vacuum acceleration of electron bunches. Laser Part. Beams 28 (4), 553.CrossRefGoogle Scholar
Startsev, E.A. & McKinstrie, C.J. 1997 Multiple scale derivation of the relativistic ponderomotive force. Phys. Rev. E 55, 7527.CrossRefGoogle Scholar
Steinhauer, L.C. & Kimura, W.D. 2003 Slow waves in microchannel metal waveguides and application to particle acceleration. Phys. Rev. ST Accel. Beams 6, 061302.CrossRefGoogle Scholar
Terzani, D., Benedetti, C., Schroeder, C.B. & Esarey, E. 2021 Accuracy of the time-averaged ponderomotive approximation for laser-plasma accelerator modeling. Phys. Plasmas 28 (6), 063105.CrossRefGoogle Scholar
Vranic, M., Martins, J.L., Vieira, J., Fonseca, R.A. & Silva, L.O. 2014 All-optical radiation reaction at $10^{21}\ {\rm w}\ {\rm cm}^{-2}$. Phys. Rev. Lett. 113, 134801.CrossRefGoogle Scholar