Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T03:13:26.723Z Has data issue: false hasContentIssue false

Bistability of a forced hydromagnetic cavity

Published online by Cambridge University Press:  13 March 2009

Luigi Nocera
Affiliation:
Department of Mathematical Sciences, The University, St Andrews KY16 9SS, Scotland
Eric R. Priest
Affiliation:
Department of Mathematical Sciences, The University, St Andrews KY16 9SS, Scotland

Abstract

We study the nonlinear stability of a one-dimensional hydromagnetic cavity into which Alfvén waves are fed by harmonic shear motions of its boundaries and where they interact with slow magnetosonic waves. We use characteristic conditions for the outgoing and ingoing Alfven waves at the boundaries where the magnetosonic oscillations are required to vanish. Forcing of Alfven waves takes place at a frequency close to the eigenfrequency of the lowest-order mode of the cavity. We let the frequency detuning δω vary as a free parameter together with the amplitude of the forcing, the plasma β and the compressive Reynolds number Re0. Given these last three parameters and varying δω, we calculate the amplitude of the nonlinear equilibrium state of the cavity as the stationary solution of a simple forced, dissipative dynamical system that governs the evolution of the cavity over a slow time scale and to which we are led by multiple-scale and Galerkin analyses of the one-dimensional MHD equations. This amplitude is a multi-valued function of δω (bistability), and we discuss the possibility of nonlinear stabilization of the Alfven wave by locking it in one of the bistable states. This amplitude undergoes saddle-node bifurcations: we calculate the two values of δω at which this occurs and the lowest value of the Reynolds number (27/2) for this to happen. We show that the magnetic energy density released during a bistable transition scales as (Re0)2; it has a maximum at β = 1 - (⅔)½ and it may amount to a substantial part of the energy originally stored in the unperturbed cavity. The magnetic power density released scales as (Re0)3 and has a maximum at β = 1 ± (⅓)½5. We conclude that the cavity is a good site for plasma heating such as that of the solar corona.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Appert, K., Hellsten, T., Sauter, O., Succi, S., Vaclávik, J. & Villard, L. 1986 Comp. Phys. Commun. 43, 125.CrossRefGoogle Scholar
Bonifacio, R. & Lugiato, R. A. 1978a Phys. Rev. Lett. 40, 1023.CrossRefGoogle Scholar
Bonifacio, R. & Lugiato, R. A. 19786 Lett. Nuovo Cim. 21, 517.CrossRefGoogle Scholar
Campbell, W. R. & Roberts, B. 1989 Astrophys. J. 338, 538.CrossRefGoogle Scholar
Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1988 Spectral Methods inFluid Dynamics. Springer.CrossRefGoogle Scholar
Dorsel, A., McCullen, J. D., Meystre, P. & Walther, H. 1983 Phys. Rev. Lett. 51, 1550.CrossRefGoogle Scholar
Forbes, T. G. & Priest, E. R. 1987 Rev. Geo. Phys. 25, 1583.CrossRefGoogle Scholar
Garmire, E., Allen, S. D. & Marbukger, I. M. 1978 Proceedings of the Conference on Guided Wave Optical Systems and Devices, Washington, D.C., USA, 28–29 March 1978, p. 174. Edited and published by the Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, USA (1978).CrossRefGoogle Scholar
Gekelman, W. & Stenzel, R. L. 1981 J. Geophys. Res. 86, 659.CrossRefGoogle Scholar
Gekelman, W. & Stenzel, R. L. 1984 J. Geophys. Res. 89, 2715.CrossRefGoogle Scholar
Gibbs, H. M., McCall, S. L. & Venatesan, T. N. C. 1976 Phys. Rev. Lett. 36, 1135.CrossRefGoogle Scholar
Giles, M. J. 1974 Plasma Phys. 16, 99.CrossRefGoogle Scholar
Gozzini, A., Maccarrone, F. & Longo, I. 1982 Nuovo Cim. 1 D, 489.CrossRefGoogle Scholar
Gozzini, A., Maccarrone, F., Mango, F., Longo, I. & Barbarino, S. 1985 J. Opt. Soc. Am. B2, 1841.CrossRefGoogle Scholar
Guckenheimer, J. & Holmes, P. 1983 Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer.CrossRefGoogle Scholar
Heyvaerts, J. & Priest, E. R. 1983 Astron. Astro Phys. 117, 220.Google Scholar
Hollweg, J. V. 1971 J. Geophys. Res. 76, 5155.CrossRefGoogle Scholar
Hollweg, J. V. 1983 Solar Wind V (ed. Neugebauer, E. M.), p. 5. Nasa Conference Publication 2280.Google Scholar
Kuperus, M., Ionson, J. A. & Spicer, D. S. 1981 Ann. Rev. Astron. Astrophys. 19, 7.CrossRefGoogle Scholar
Leroy, B. 1981 Astron. Astrophys. 47, 245.Google Scholar
Low, B. C. 1977 Astrophys. J. 212, 234.CrossRefGoogle Scholar
McCall, S. L. 1974 Phys. Rev. A9, 1515.CrossRefGoogle Scholar
Mattig, W. & Nesis, A. 1974 Solar Phys. 36, 3.CrossRefGoogle Scholar
Nocera, L. 1989 Spectcode: a spectral programme for PDEs. St Andrews University Internal Report.Google Scholar
Nocera, L. 1991 Subharmonic bifurcations of a forced hydromagnetic cavity. To be submitted to Journal of Plasma Physics.CrossRefGoogle Scholar
Nocera, L. & Priest, E. R. 1986 Geophys. Astrophys. Fluid Dyn. 37, 193.CrossRefGoogle Scholar
Nocera, L., Priest, E. R. & Hollweg, J. V. 1986 Geophys. Astrophys. Fluid Dyn. 35, 111.CrossRefGoogle Scholar
Seidel, H. 1971 US Patent 3610731 (October 1971).Google Scholar
Stenzel, R. L. & Gekelman, W. 1981 J. Geophys. Res. 86, 649.CrossRefGoogle Scholar
Szöke, A., Daneau, V., Goldhar, J. & Kurnit, N. A. 1969 Appl. Phys. Lett. 15, 376.CrossRefGoogle Scholar
Veerhest, F. 1981 Wave Motion, 3, 231.CrossRefGoogle Scholar
Velli, M., Einaudi, G. & Hood, A. W. 1990 Astrophys. J. 350, 419.CrossRefGoogle Scholar
Wherret, B. S. & Smith, S. O. (Eds.) 1985 Proceedings of a Royal Society Discussion Meeting held on 21 and 22 March 1984. Cambridge University Press.Google Scholar