Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-12-04T19:28:38.613Z Has data issue: false hasContentIssue false

Bifurcation of a free boundary equilibrium

Published online by Cambridge University Press:  13 March 2009

A. Turnbull
Affiliation:
School of Physical Sciences, The Flinders University of South Australia, Bedford Park, South Australia5042

Abstract

The problem of bifurcation of a free boundary equilibrium is reconsidered in a simple model. We find which combinations of specified parameters result in a non-unique solution and find the resulting bifurcation point. By including reversed current solutions, the model sheds some light on the equilibrium βp limit obtained in previous analytic and numerical models.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Clarke, J. F. & Sigmar, D. J. 1977 Phys. Rev. Lett. 38, 70.CrossRefGoogle Scholar
Dory, R. A. & Peng, Y. K. M. 1977 Nucl. Fusion, 17, 27.CrossRefGoogle Scholar
Field, J. J. & Papaloizou, J. C. B. 1977 J. Plasma Phys. 18, 347.CrossRefGoogle Scholar
Haas, F. A. & Thomas, C. Ll. 1973 Phys. Fluids, 16, 152.CrossRefGoogle Scholar
Johnson, J. L. et al. 1979 J. Comp. Phys. 32, 212.CrossRefGoogle Scholar
Sestero, A. 1976 Phys. Fluids, 19, 167.CrossRefGoogle Scholar
Strauss, H. R. 1971 Phys. Rev. Lett. 26, 616.CrossRefGoogle Scholar
Thomas, C. Ll. 1979 J. Plasma Phys. 21, 177.CrossRefGoogle Scholar
Turnbull, A. D. 1981 Ph.D. Thesis, The Flinders University of South Australia.Google Scholar