Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T21:47:52.676Z Has data issue: false hasContentIssue false

Beltrami fields in a hot electron–positron–ion plasma

Published online by Cambridge University Press:  06 February 2012

M. IQBAL
Affiliation:
Department of Physics, University of Engineering and Technology, Lahore 54890, Pakistan ([email protected])
P. K. SHUKLA
Affiliation:
RUB International Chair, International Centre for Advanced Studies in Physical Sciences, Institut für Theoretische Physik, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A possibility of relaxation of relativistically hot electron and positron (ep) plasma with a small fraction of hot or cold ions has been investigated analytically. It is observed that a strong interaction of plasma flow and field leads to a non-force-free relaxed magnetic field configuration governed by the triple curl Beltrami (TCB) equation. The triple curl Beltrami (TCB) field composed of three different Beltrami fields gives rise to three multiscale relaxed structures. The results may have the strong relevance to some astrophysical and laboratory plasmas.

Type
Letter
Copyright
Copyright © Cambridge University Press 2012

References

Berezhiani, V. I., El-Ashry, M. Y. and Mofiz, U. A. 1994 Theory of strong-electromagnetic-wave propagation in an electron-positron-ion plasma. Phys. Rev. E 50, 448452.CrossRefGoogle Scholar
Berezhiani, V. I., Garuchava, D. P. and Shukla, P. K. 2007 Production of electron-positron pairs by intense laser pulses in an overdense plasma. Phys. Lett. A 360, 624628.CrossRefGoogle Scholar
Berezhiani, V. I. and Mahajan, S. M. 1994 Large amplitude localized structures in relativistic electron-positron ion plasma. Phys. Rev. Lett. 73, 11101113.CrossRefGoogle ScholarPubMed
Berezhiani, V. I. and Mahajan, S. M. 1995 Large relativistic density pulses in electron-positron-ion plasmas. Phys. Rev. E 52, 19681979.CrossRefGoogle ScholarPubMed
Berezhiani, V. I., Mahajan, S. M., Yoshida, Z. and Ohhashi, M. 2002 Self-trapping of strong electromagnetic beams in relativistic plasmas. Phys. Rev. E 65, 047402047405.CrossRefGoogle ScholarPubMed
Berezhiani, V. I., Tsintsadze, L. N. and Shukla, P. K. 1992a Influence of electron-positron pairs on the wakefields in plasmas. Phys. Scr. 46, 5556.CrossRefGoogle Scholar
Berezhiani, V. I., Tskhakaya, D. D. and Shukla, P. K. 1992b Pair production in a strong wake field driven by an intense short laser pulse. Phys. Rev. A 46, 66086612.CrossRefGoogle Scholar
Bhattacharyya, R., Janaki, M. S. and Dasgupta, B. 2003 Relaxation in electron-positron plasma: a possibility. Phys. Lett. A 315, 120125.CrossRefGoogle Scholar
Björnsson, G. and Svensson, R. 1992 Hot pair-dominated accretion disks. Astrophys. J. 394, 500514.CrossRefGoogle Scholar
Chandrasekhar, S. and Kendall, P. C. 1957 On force-free magnetic fields. Astrophys. J. 126, 457460.CrossRefGoogle Scholar
Chen, K. and Ruderman, M. 1993 Pulsar death lines and death valley. Astrophys. J. 402, 264270.CrossRefGoogle Scholar
Helander, P. and Ward, D. J. 2003 Positron creation and annihilation in tokamak plasmas with runaway electrons. Phys. Rev. Lett. 90, 135004135007.CrossRefGoogle ScholarPubMed
Iqbal, M., Berezhiani, V. I. and Yoshida, Z. 2008 Multiscale structures in relativistic pair plasmas. Phys. Plasmas 15, 032905032910.CrossRefGoogle Scholar
Iqbal, M. and Shukla, P. K. 2011 Relaxation of a magnetized electron-positron-ion plasma with flow. Phys. Lett. A 375, 27252727.CrossRefGoogle Scholar
Lakhina, G. S. and Buti, B. 1981 Generation of a d.c. field by nonlinear electromagnetic waves in relativistic plasmas. Astrophys. Space Sci. 79, 2536.CrossRefGoogle Scholar
Liang, E. P., Wilks, S. C. and Tabak, M. 1998 Pair production by ultraintense lasers. Phys. Rev. Lett. 81, 48874890.CrossRefGoogle Scholar
Lightman, A. P. and Zdziarski, A. A. 1987 Pair production and compton scattering in compact sources and comparison to observations of active galactic nuclei. Astrophys. J. 319, 643661.CrossRefGoogle Scholar
Lominadze, D. C., Machabeli, G. Z., Melikidze, G. I. and Pataraya, A. D. 1986 Magnetospheric plasma of a pulsar. Sov. J. Plasma Phys. 12, 712721.Google Scholar
Machabeli, G. Z., Luo, Q., Melrose, D. B. and Vladimirov, S. 2000a A new mechanism for pulsar gamma-ray emission. Mon. Not. R. Astron. Soc. 312, 5156.CrossRefGoogle Scholar
Machabeli, G. Z., Luo, Q., Vladimirov, S. V. and Melrose, D. B. 2002 Quasilinear diffusion as a result of modulational instability in the pulsar plasma. Phys. Rev. E. 65, 036408.CrossRefGoogle ScholarPubMed
Machabeli, G. Z., Vladimirov, S. V. and Melrose, D. B. 1999 Nonlinear dynamics of an ordinary electromagnetic mode in a pair plasma. Phys. Rev. E. 59, 45524558.CrossRefGoogle Scholar
Machabeli, G. Z., Vladimirov, S. V., Melrose, D. B. and Luo, Q. 2000b Particle acceleration by a fast ordinary mode in an electron-positron plasma. Phys. Plasmas 7, 12801286.CrossRefGoogle Scholar
Mahajan, S. M. and Yoshida, Z. 1998 Double curl Beltrami flow: diamagnetic structures. Phys. Rev. Lett. 81, 48634866.CrossRefGoogle Scholar
Mahmood, S. and Ur-Rehman, H. 2009 Electrostatic solitons in unmagnetized hot electron-positron-ion plasmas. Phys. Lett. A 373, 22552259.CrossRefGoogle Scholar
Marklund, M. and Shukla, P. K. 2006 Nonlinear collective effects in photon-photon and photon-plasma interaction. Rev. Mod. Phys. 78, 591640.CrossRefGoogle Scholar
Misner, C. W., Thorne, K. S. and Wheeler, J. A. 1980 Gravitation. San Francisco: Freeman.Google Scholar
Popel, S. I., Vladimirov, S. V. and Shukla, P. K. 1995 Ion-acoustic solitons in electron–positron–ion plasmas. Phys. Plasmas 2, 716719.CrossRefGoogle Scholar
Rees, M. J. 1983 The Very Early Universe (ed. Gibbson, W. G., Hawking, S. W. and Siklos, S.) Cambridge: Cambridge University Press.Google Scholar
Reynolds, C. S., Fabian, A. C., Celotti, A. and Rees, M. J. 1996 The matter content of the jet in M87 – evidence for an electron-positron jet. Mon. Not. R. Astron. Soc. 283, 873880.CrossRefGoogle Scholar
Rizzato, F. B. 1989 Weak nonlinear electromagnetic waves and low-frequency magnetic-field generation in electron-positron-ion plasmas. J. Plasma Phys. 40, 289298.CrossRefGoogle Scholar
Shah, A. and Saeed, R. 2009 Ion acoustic shock waves in a relativistic electron-positron-ion plasma. Phys. Lett. A 373, 41644168.CrossRefGoogle Scholar
Shatashvili, N. L., Javakhishvili, J. I. and Kaya, H. 1997 Nonlinear wave dynamics in two temperature electron-positron-ion plasma. Astrophys. Space Sci. 250, 109115.CrossRefGoogle Scholar
Shukla, P. K. 2005 Beltrami fields in a three-species magnetoplasma. Phys. Lett. A 334, 205207.CrossRefGoogle Scholar
Shukla, P. K. and Mahajan, S. M. 2004a Relaxed states in magnetized pair plasmas. Phys. Scr. T113, 151152.Google Scholar
Shukla, P. K. and Mahajan, S. M. 2004b Formation of large scale structures in dusty magnetoplasmas. Phys. Lett. A 328, 185188.CrossRefGoogle Scholar
Surko, C. M., Leventhal, M., Crane, W. S., Passner, A., Wysocki, F., Murphy, T. J., Strachan, J. and Rowan, W. L. 1986 Use of positrons to study transport in tokamak plasmas. Rev. Sci. Instrum. 57, 18621867.CrossRefGoogle Scholar
Surko, C. M. and Murphy, T. 1990 Use of the positron as a plasma particle. Phys. Fluids B 2, 13721375.CrossRefGoogle Scholar
Svensson, R. 1994 The nonthermal pair model for the X-ray and gamma-ray spectra from active galactic nuclei. Astrophys. J. Suppl. Ser. 92, 585592.CrossRefGoogle Scholar
Takahara, F. and Kusunose, M. 1985 Electron-positron pair production in a hot accretion plasma around a massive black hole. Prog. Theor. Phys. 73, 13901400.CrossRefGoogle Scholar
Taylor, J. B. 1974 Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 33, 11391141.CrossRefGoogle Scholar
Taylor, J. B. 1986 Relaxation and magnetic reconnection in plasmas. Rev. Mod. Phys. 58, 741763.CrossRefGoogle Scholar
Tinkle, M. D., Greaves, R. G., Surko, C. M., Spencer, R. L. and Mason, G. W. 1994 Low-order modes as diagnostics of spheroidal non-neutral plasmas. Phys. Rev. Lett. 72, 352355.CrossRefGoogle ScholarPubMed
Yoshida, Z. 2010 Nonlinear Science. Dordrecht: Springer.CrossRefGoogle Scholar
Yoshida, Z. and Giga, Y. 1990 Remarks on spectra of operator rot. Math. Z. 204, 235245.CrossRefGoogle Scholar
Yoshida, Z. and Mahajan, S. M. 1999 Simultaneous Beltrami conditions in coupled vortex dynamics. J. Math. Phys. 40, 50805091.CrossRefGoogle Scholar
Yoshida, Z., Mahajan, S. M., Ohsaki, S., Iqbal, M. and Shatashvili, N. 2001 Beltrami fields in plasmas: high-confinement boundary layers and high beta equilibria. Phys. Plasmas 8, 21252131.CrossRefGoogle Scholar