Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T02:30:50.884Z Has data issue: false hasContentIssue false

Azimuthal magnetorotational instability with super-rotation

Published online by Cambridge University Press:  25 January 2018

G. Rüdiger*
Affiliation:
Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany
M. Schultz
Affiliation:
Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany
M. Gellert
Affiliation:
Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany
F. Stefani
Affiliation:
Helmholtz-Zentrum Dresden-Rossendorf, PF 510119, 01314 Dresden, Germany
*
Email address for correspondence: [email protected]

Abstract

It is demonstrated that the azimuthal magnetorotational instability (AMRI) also works with radially increasing rotation rates contrary to the standard magnetorotational instability for axial fields which requires negative shear. The stability against non-axisymmetric perturbations of a conducting Taylor–Couette flow with positive shear under the influence of a toroidal magnetic field is considered if the background field between the cylinders is current free. For small magnetic Prandtl number $Pm\rightarrow 0$ the curves of neutral stability converge in the (Hartmann number,Reynolds number) plane approximating the stability curve obtained in the inductionless limit $Pm=0$. The numerical solutions for $Pm=0$ indicate the existence of a lower limit of the shear rate. For large $Pm$ the curves scale with the magnetic Reynolds number of the outer cylinder but the flow is always stable for magnetic Prandtl number unity as is typical for double-diffusive instabilities. We are particularly interested to know the minimum Hartmann number for neutral stability. For models with resting or almost resting inner cylinder and with perfectly conducting cylinder material the minimum Hartmann number occurs for a radius ratio of $r_{\text{in}}=0.9$. The corresponding critical Reynolds numbers are smaller than $10^{4}$.

Type
Research Article
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acheson, D. J. 1978 On the instability of toroidal magnetic fields and differential rotation in stars. Phil. Trans. R. Soc. Lond. A 289, 459500.Google Scholar
Balbus, S. A. 2011 Fluid dynamics: a turbulent matter. Nature 470, 475476.Google Scholar
Balbus, S. A. & Hawley, J. F. 1991 A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II. Nonlinear evolution. Astrophys. J. 376, 214233.CrossRefGoogle Scholar
Balbus, S. A. & Hawley, J. F. 1992 A powerful local shear instability in weakly magnetized disks. IV. Nonaxisymmetric perturbations. Astrophys. J. 400, 610621.CrossRefGoogle Scholar
Burin, M. J. & Czarnocki, C. J. 2012 Subcritical transition and spiral turbulence in circular Couette flow. J. Fluid Mech. 709, 106122.Google Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford.Google Scholar
Chanmugam, G. 1979 Adiabatic stability of toroidal magnetic fields in differentially rotating stars. Mon. Not. R. Astron. Soc. 187, 769776.Google Scholar
Deguchi, K. 2017 Linear instability in Rayleigh-stable Taylor–Couette flow. Phys. Rev. E 95 (2), 021102.Google ScholarPubMed
Dubrulle, B. & Knobloch, E. 1993 On instabilities in magnetized accretion disks. Astron. Astrophys. 274, 667.Google Scholar
Edmonds, F. N. Jr 1958 Hydromagnetic stability of a conducting fluid in a circular magnetic field. Phys. Fluids 1, 3041.Google Scholar
Fearn, D. R. 1984 Hydromagnetic waves in a differentialy rotating annulus. II. Resistive instabilities. Geophys. Astrophys. Fluid Dyn. 30, 227239.Google Scholar
Fournier, A., Bunge, H.-P., Hollerbach, R. & Vilotte, J.-P. 2004 Application of the spectral-element method to the axisymmetric Navier–Stokes equation. Geophys. J. Intl 156, 682700.Google Scholar
Gotoh, K. 1962 Stability of a flow between two rotating cylinders in the presence of a circular magnetic field. J. Phys. Soc. Japan 17, 10531061.Google Scholar
Herron, I. & Soliman, F. 2006 The stability of Couette flow in a toroidal magnetic field. Appl. Math. Lett. 19, 11131117.Google Scholar
Hollerbach, R., Teeluck, V. & Rüdiger, G. 2010 Nonaxisymmetric magnetorotational instabilities in cylindrical Taylor–Couette Flow. Phys. Rev. Lett. 104 (4), 044502.Google Scholar
Howard, L. N. & Gupta, A. S. 1962 On the hydrodynamic and hydromagnetic stability of swirling flows. J. Fluid Mech. 14, 463476.CrossRefGoogle Scholar
Knobloch, E. 1992 On the stability of magnetized accretion discs. Mon. Not. R. Astron. Soc. 255, 25P28P.Google Scholar
Liu, W., Goodman, J., Herron, I. & Ji, H. 2006 Helical magnetorotational instability in magnetized Taylor–Couette flow. Phys. Rev. E 74 (5), 056302.Google ScholarPubMed
Michael, D. 1954 The stability of an incompressible electrically conducting fluid rotating about an axis when current flows parallel to the axis. Mathematika 1, 4550.Google Scholar
Ogilvie, G. I. & Pringle, J. E. 1996 The non-axisymmetric instability of a cylindrical shear flow containing an azimuthal magnetic field. Mon. Not. R. Astron. Soc. 279, 152164.Google Scholar
Pessah, M. E. & Psaltis, D. 2005 The stability of magnetized rotating plasmas with superthermal fields. Astrophys. J. 628, 879901.Google Scholar
Roberts, P. H. 1967 An Introduction to Magnetohydrodynamics. Longmans.Google Scholar
Rüdiger, G., Gellert, M., Schultz, M., Hollerbach, R. & Stefani, F. 2014 Astrophysical and experimental implications from the magnetorotational instability of toroidal fields. Mon. Not. R. Astron. Soc. 438, 271277.Google Scholar
Rüdiger, G., Kitchatinov, L. L. & Hollerbach, R. 2013 Magnetic Processes in Astrophysics: Theory, Simulations, Experiments. Wiley-VCH.Google Scholar
Rüdiger, G. & Schultz, M. 2010 Tayler instability of toroidal magnetic fields in MHD Taylor–Couette flows. Astron. Nachr. 331, 121.CrossRefGoogle Scholar
Rüdiger, G., Schultz, M., Gellert, M. & Stefani, F. 2016 Subcritical excitation of the current-driven Tayler instability by super-rotation. Phys. Fluids 28 (1), 014105.Google Scholar
Schultz-Grunow, F. 1959 Zur Stabilität der Couette–Strömung. Zeitschrift für Angewandte Mathematik und Mechanik 39, 101110.CrossRefGoogle Scholar
Seilmayer, M., Galindo, V., Gerbeth, G., Gundrum, T., Stefani, F., Gellert, M., Rüdiger, G., Schultz, M. & Hollerbach, R. 2014 Experimental evidence for nonaxisymmetric magnetorotational instability in a rotating liquid metal exposed to an azimuthal magnetic field. Phys. Rev. Lett. 113 (2), 024505.CrossRefGoogle Scholar
Seilmayer, M., Stefani, F., Gundrum, T., Weier, T., Gerbeth, G., Gellert, M. & Rüdiger, G. 2012 Experimental evidence for a transient Tayler instability in a cylindrical liquid-metal column. Phys. Rev. Lett. 108 (24), 244501.Google Scholar
Shalybkov, D. 2006 Pinch instabilities in Taylor–Couette flow. Phys. Rev. E 73 (1), 016302.Google Scholar
Stefani, F. & Kirillov, O. N. 2015 Destabilization of rotating flows with positive shear by azimuthal magnetic fields. Phys. Rev. E 92 (5), 051001.Google Scholar
Tayler, R. J. 1957 Hydromagnetic instabilities of an ideally conducting fluid. Proc. Phys. Soc. B 70, 3148.Google Scholar
Tayler, R. J. 1973 The adiabatic stability of stars containing magnetic fields-I. Toroidal fields. Mon. Not. R. Astron. Soc. 161, 365.Google Scholar
Taylor, G. I. 1936 Fluid friction between rotating cylinders. I. Torque measurements. Proc. R. Soc. Lond. A 157, 546564.Google Scholar
Terquem, C. & Papaloizou, J. C. B. 1996 On the stability of an accretion disc containing a toroidal magnetic field. Mon. Not. R. Astron. Soc. 279, 767784.Google Scholar
Vandakurov, Y. V. 1972 Theory for the stability of a star with a toroidal magnetic field. Sov. Astron. 16, 265.Google Scholar
Velikhov, E. 1959 Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field. Sov. Phys. JETP 36, 13891404.Google Scholar
Wendt, F. 1933 Turbulente Strömungen zwischen zwei rotierenden koaxialen Zylindern, Diss. Göttingen 1934. Ing.-Arch. 4, 557595.Google Scholar