Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-24T06:53:16.181Z Has data issue: false hasContentIssue false

Asymptotic state of the finite-Larmor-radius guiding-centre plasma

Published online by Cambridge University Press:  13 March 2009

G. Knorr
Affiliation:
Association Euratom-Risø National Laboratory, Physics Department, Risø, DK-4000 Roskilde, Denmark
H. L. Pécseli
Affiliation:
Association Euratom-Risø National Laboratory, Physics Department, Risø, DK-4000 Roskilde, Denmark

Abstract

The equilibrium properties of a two-dimensional plasma are examined theoretically, using a model where the finite-Larmor-radius corrections to the simple guiding-centre description are included. The analysis is carried out in a truncated Fourier representation of the resulting equations. This system has three ‘rugged’ quadratic invariants. A canonical-ensemble probability distribution characterized by three temperatures is derived. The resulting partition function is obtained and the equilibrium spectral energy density is calculated. The possibility of negative-temperature states leading to an inverse energy cascade is pointed out.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balescu, R., Bessenrodt, H., Shukla, P. K. & Spatschek, K. H. 1987 J. Plasma Phys. 37, 163.CrossRefGoogle Scholar
Butcher Ehrhardt, A. & Post, R. S. 1981 Phys. Fluids, 24, 1625.CrossRefGoogle Scholar
Cheng, C. Z. & Okuda, H. 1978 Nucl. Fusion, 18, 587.CrossRefGoogle Scholar
Harries, W. L. 1970 Phys. Fluids, 13, 1751.CrossRefGoogle Scholar
Hasegawa, A. & Mima, K. 1977 Phys. Rev. Lett. 39, 205.CrossRefGoogle Scholar
Hasegawa, A., Imamura, T., Mima, A. & Taniuti, T. 1978 J. Phys. Soc. Jpn, 45, 1005.CrossRefGoogle Scholar
Jovanović, D., Pécseli, H. L., Rasmussen, J. J. & Thomsen, K. 1987 J. Plasma Phys. 37, 81.CrossRefGoogle Scholar
Khinchin, A. I. 1949 Mathematical Foundations of Statistical Mechanics, chap. 3, paragraph 10. Dover.Google Scholar
Knorr, G. 1974 Plasma Phys. 16, 423.CrossRefGoogle Scholar
Knorr, G., Hansen, F. R., Lynov, J. P., Pécseli, H. L. & Rasmussen, J. J. 1989 Physica Scripta, in press.Google Scholar
Kraichnan, R. H. 1967 Phys. Fluids, 10, 1417.CrossRefGoogle Scholar
Kraichnan, R. H. 1975 J. Fluid Mech. 67, 155.CrossRefGoogle Scholar
Kraichnan, R. H. & Montgomery, D. 1980 Rep. Prog. Phys. 43, 547.CrossRefGoogle Scholar
Montgomery, D. 1975 Plasma Physics/Physique des Plasmas (ed. DeWitt, C. & Peyraud, J.), p. 431. Gordon and Breach.Google Scholar
Onsager, L. 1949 Suppl. Nuovo Cim. (Ser. 9), 6, 279.CrossRefGoogle Scholar
Pécseli, H. L. & Mikkelsen, T. 1985 J. Plasma Phys. 34, 77.CrossRefGoogle Scholar
Pécseli, H. L. & Mikkelsen, T. 1986 Plasma Phys. Contr. Fusion, 28, 1025.CrossRefGoogle Scholar
Pécseli, H. L., Rasmussen, J. J., Sugai, H. & Thomsen, K. 1984 Plasma Phys. Contr. Fusion, 26, 1021.CrossRefGoogle Scholar
Pécseli, H. L., Rasmussen, J. J. & Thomsen, K. 1985 Plasma Phys. Contr. Fusion, 29, 837.CrossRefGoogle Scholar
Salu, Y. & Knorr, G. 1976 Plasma Phys. 18, 769.CrossRefGoogle Scholar
Seyler, C. E., Salu, Y., Montgomery, D. & Knorr, G. 1975 Phys. Fluids, 18, 803.CrossRefGoogle Scholar
Sugai, H. 1984 Proceedings of the ICPP-1984 International Conference on Plasma Physics, Lausanne, Switzerland, 27 June–3 July, Invited Papers (ed. M. Q. Tran and R. J. Verbeek), vol. 2, p. 575.Google Scholar
Sugai, H., Pécseli, H. L., Rasmussen, J. J. & Thomsen, K. 1983 Phys. Fluids, 26, 1388.CrossRefGoogle Scholar
Wandel, C. F. & Kofoed-Hansen, O. 1962 J. Geophys. Res. 67, 3089.CrossRefGoogle Scholar