Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T16:54:46.816Z Has data issue: false hasContentIssue false

Application of nonlinear models to estimate the gain of one-dimensional free-electron lasers

Published online by Cambridge University Press:  15 May 2017

E. Peter*
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970, Porto Alegre, RS, Brasil
F. B. Rizzato*
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970, Porto Alegre, RS, Brasil
A. Endler
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970, Porto Alegre, RS, Brasil
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

In the present work, we make use of simplified nonlinear models based on the compressibility factor (Peter et al., Phys. Plasmas, vol. 20 (12), 2013, 123104) to predict the gain of one-dimensional (1-D) free-electron lasers (FELs), considering space-charge and thermal effects. These models proved to be reasonable to estimate some aspects of 1-D FEL theory, such as the position $z$ of the onset of mixing, in the case of a initially cold electron beam, and the position $z$ of the breakdown of the laminar regime, in the case of an initially warm beam (Peter et al., Phys. Plasmas, vol. 21 (11), 2014, 113104). The results given by the models are compared to wave–particle simulations showing a reasonable agreement.

Type
Research Article
Copyright
© Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allaria, E., Battistoni, A., Bencivenga, F., Borghes, R., Callegari, C., Capotondi, F., Castronovo, D., Cinquegrana, P., Cocco, D., Coreno, M. et al. 2012 Tunability experiments at the fermi@elettra free-electron laser. New J. Phys. 14, 113009.Google Scholar
Bonifacio, R., Casagrande, F., Cerchoni, G., de Salvo Souza, L., Pierini, P. & Piovella, N. 1990 Physics of the high-gain fel and superradiance. Riv. del Nuovo Cimento 13 (9), 169.Google Scholar
Brau, C. 1990 Free-Electron Lasers. Academic.Google Scholar
Chakhmachi, A. & Maraghechi, B. 2009 Stability properties of free-electron laser in Raman regime with thermal electron beam. Phys. Plasmas 16 (4), 043110.CrossRefGoogle Scholar
Coffey, T. P. 1971 Breaking of large amplitude plasma oscillations. Phys. Fluids 14 (7), 14021406.Google Scholar
Davidson, R. C. & Qin, H. 2001 Physics of Intense Charged Particle Beams in High Energy Accelerators. World Scientific.Google Scholar
Freund, H. P. & Antonsen, T. M. 1996 Principles of Free-Electron Lasers. Chapman and Hall.Google Scholar
Hindmarsh, A. C. 1980 Lsode and lsodi, two new initial value ordinary differential equation solver. ACM SIGNUM Newsletter 15 (4), 1011.Google Scholar
Hindmarsh, A. C. 1983 ODEPACK, A systematized collection of ODE solvers. In Scientific Computing (ed. Stepleman, R. S. et al. ), IMACS Transactions on Scientific Computation, vol. 1, pp. 5564. North Holland Publishing Co.Google Scholar
Kim, K.-J. 1986 Three-dimensional analysis of coherent amplification and self-amplified spontaneous emission in free-electron lasers. Phys. Rev. Lett. 57, 18711874.CrossRefGoogle ScholarPubMed
Kroll, N. M. & McMullin, W. A. 1978 Stimulated emission from relativistic electrons passing through a spatially periodic transverse magnetic field. Phys. Rev. A 17 (7), 300308.Google Scholar
Marshall, T. C. 1985 Free-Electron Lasers. Macmillan Publishing Company.Google Scholar
McNeil, B. W. J. & Thompson, N. R. 2010 X-ray free-electron lasers. Nature Photonics 4, 814821.Google Scholar
Milton, S. V., Gluskin, E., Arnold, N. D., Benson, C., Berg, W., Biedron, S. G., Borland, M., Chae, Y.-C., Dejus, R. J., Den Hartog, P. K. et al. 2001 Exponential gain and saturation of a self-amplified spontaneous emission free-electron laser. Science 292 (5524), 20372041.Google Scholar
Murphy, J. B., Pellegrini, C. & Bonifacio, R. 1985 Collective instability of a free electron laser including space charge and harmonics. Opt. Commun. 53 (3), 197202.Google Scholar
Peter, E., Endler, A. & Rizzato, F. B. 2014 Nonlinear model for thermal effects in free-electron lasers. Phys. Plasmas 21 (11), 113104.Google Scholar
Peter, E., Endler, A. & Rizzato, F. B. 2016 Growth rate for free-electron lasers through a warm beam layered model. J. Plasma Phys. 82, 905820307.Google Scholar
Peter, E., Endler, A., Rizzato, F. B. & Serbeto, A. 2013 Mixing and space-charge effects in free-electron lasers. Phys. Plasmas 20 (12), 123104.Google Scholar
Seo, Y. & Choi, E. H. 1997 A submillimeter Raman free-electron laser in a dense plasma background. IEEE Trans. Plasma Sci. 25 (2), 360363.Google Scholar
Souza, E. G., Endler, A., Pakter, R., Rizzato, F. B. & Nunes, R. P. 2010 The controlling role of envelope mismatches in intense inhomogeneous charged beams. Appl. Phys. Lett. 96, 141503.Google Scholar
Souza, E. G., Endler, A., Rizzato, F. B. & Pakter, R. 2012 Adiabatic-nonadiabatic transition in warm long-range interacting systems: the transport of intense inhomogeneous beams. Phys. Rev. Lett. 109, 075003.CrossRefGoogle ScholarPubMed
Sprangle, P., Tang, C.-M. & Manheimer, W. M. 1980 Nonlinear theory of free-electron lasers and efficiency enhancement. Phys. Rev. A 21, 302318.Google Scholar