Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-02T19:05:35.233Z Has data issue: false hasContentIssue false

An investigation of the generation and properties of laboratory-produced ball lightning

Published online by Cambridge University Press:  19 March 2015

A. G. Oreshko*
Affiliation:
Moscow Aviation Institute (National Aerospace Research University), Volokolamskoye shosse 4, 125871 Moscow, Russia
*
Email address for correspondence: [email protected]

Abstract

The experiments revealed that ball lightning is a self-confining quasi-neutral in a whole plasma system that rotates around its axis. Ball lightning has a structure of a spherical electric domain, consisting of a kernel with excess negative charge and an external spherical layer with excess positive charge. The excess of charges of one sort and the lack of charges of the other sort in the kernel or in the external spherical layer significantly reduces the possibility of electron capture by means of an electric field, created by the nearest ions and leads to a drastic slowdown of recombination process. Direct proof has been obtained that inside of ball lightning – in an external spherical layer that rotates around the axis – there is a circular current of sub-relativistic particles. This current creates and maintains its own poloidal magnetic field of ball lightning, i.e. it carries out the function of magnetic dynamo. The kernel of ball lightning is situated in a region with minimum values of induction of the magnetic field. The inequality of positive and negative charges in elements of ball lightning also significantly reduces losses of the charged plasma on bremsstrahlung. Ball lightning generation occurs in a plasmic vortex. The ball lightning energy in the region of its generation significantly differs from the ball lightning energy, which is drifting in space. The axial component of kinetic energy of particles slightly exceeds 100 keV and the rotational component of the ions energy is a bit greater than 1 MeV. Ball lightning is ‘embedded’ in atmosphere autonomous accelerator of charged particles of a cyclotron type due to self-generation of strong crossed electric and magnetic fields. A discussion of the conditions of stability and long-term existence of ball lightning is given.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adlam, J. H. and Allen, J. E. 1958 The structure of strong collision-free hydromagnetic waves. Phil. Mag. A 3, 448455.CrossRefGoogle Scholar
Arago, F. 1837 Notices Scientifiques: Sur le Tonnerre. Paris: Bachelier (in French).Google Scholar
Bary, J. D. 1980 Ball Lightning and Bead Lightning. New York: Plenum Press.CrossRefGoogle Scholar
Bychkov, V. L., Smirnov, B. M. and Strizhev, A. Yu. 1993 Analysis of the Russian-Austrian ball lightning data banks. Int. J. Meteorol. 18 (178), 113120.Google Scholar
Coleman, P. F. 2006 A unified theory of ball lightning and unexplained atmospheric lights. J. Sci. Explor. 20 (2), 215238.Google Scholar
Dijkhuis, G. C. 1981 A model for ball lightning. Nature 284, 150151.CrossRefGoogle Scholar
Dmitriev, M. T. 1967 The nature of ball lightning. Nature 6, 98106 (in Russian).Google Scholar
Dmitriev, M. T., Bahtin, B. I. and Martynov, V. I. 1981 Thermal factor of ball lightning. Sov. Phys. Tech. Phys. 26, 15181520.Google Scholar
Donoso, J. M., Trueba, J. L. and Ranada, A. F. 2006 The riddle of ball lightning: a review. Sci. World J. 6, 254278. ISSN ; DOI 10.1100/tsw.2006.48.CrossRefGoogle ScholarPubMed
Dvornikov, M. 2012 Quantum exchange interaction of spherically symmetric plasmoids. J. Atmos. Sol.-Terr. Phys. 89, 6266.CrossRefGoogle Scholar
Fedosin, S. G. and Kim, A. S. 2001 Electron-ionic model of ball lightning. J. New Energy 6 (1), 1118.Google Scholar
Furov, L. V. 2005 Generation of autonomous long-lived plasma objects in free atmosphere. Tech. Phys. 50 (3), 380383.CrossRefGoogle Scholar
Grigor'ev, A. I. 2006 Ball Lightning. Yaroslavl': University Press (in Russian).Google Scholar
Ionita, C., Schrittwieser, R. W. and Stenzel, R. L. 2009 Dynamics of Fireballs. J. Plasma Fusion Res. Ser. 8, 750754.Google Scholar
Kadomtsev, B. B. 1990 On the ball lightning phenomenology. Comm. Plasma Phys. Control. Fusion. 13 (5), 277285.Google Scholar
Kapitza, P. L. 1955 The nature of ball lightning. Dokl. Akad. Nauk SSSR 101, 245248 (in Russian), (English translation: Collected Papers of Kapitza. V.2. Ed. D.Ter Haar 1965 New York: Pergamon, 776–780).Google Scholar
Kawano, S. 2011 Hypothesis of ball lightning emerging in fuselage. Int. J. Unconv. Electromagn. Plasmas 3 (1–2), 4144.Google Scholar
Kuz'min, R. N., Miskinova, N. A. and Shvilkin, B. N. 2006 Laboratory model of ball lightning. Chem. Phys. 25 (3), 9093 (in Russian).Google Scholar
Lancaster, K. L.et al. 2007 Measurements of energy transport patterns in solid density laser plasma interactions at intensities of 5 × 1020 Wcm-2 Phys. Rev. Lett. 98, 125002.Google Scholar
Levinshtein, M. E., Pozhela, Y. K. and Shur, M. S. 1975 The Effect of Gunn. Moscow: Soviet Radio (in Russian).Google Scholar
Lowke, J. J. 1996 A theory of ball lightning as an electric discharge. J. Phys. D: Appl. Phys. 5, 12371244.CrossRefGoogle Scholar
Meessen, A. 2012 Ball lightning: bubbles of electronic plasma oscillations. Int. J. Unconv. Electromagn. Plasmas 4, 163179.Google Scholar
Mitchell, J. B. A., LeGarrec, J. L., Sztucki, M., Narayanan, T., Dikhtyar, V. and Jerby, E. 2008 Evidence for nanoparticles in microwave-generated fireballs observed by synchrotron x-ray scattering Phys. Rev. Lett. 100, 0605001. (doi:10.1103/PhysRevLett.100.065001).Google Scholar
Nikitin, A. I. 2006 The ball lightning problem will be whether solved in the 21st century? Chem. Phys. 25 (3), 1837. (in Russian).Google Scholar
Ofuruton, H., Komogawa, M. and Ohtsuki, Y.-H. 2011 Experiments for artificial ball lightning by using microwave localization. Int. J. Unconv. Electromagn. Plasmas (UEP) 3 (1–2), 7576.Google Scholar
Oreshko, A. G. 1991 Double electrical layers of space charge in an cathode plasma. Plasma Phys. Rep. 17 (6), 679684.Google Scholar
Oreshko, A. G. 2001 The generation of strong fields in plasma. Dokl. Phys. 46, 911.CrossRefGoogle Scholar
Oreshko, A. G. 2004a The generation of fast particles in electrical discharges. In: Proc.13th Int. Symp. on High Current Electronics. Tomsk, pp. 337–340.Google Scholar
Oreshko, A. G. 2004b The combined discharge for receiving of neutrons. In: Proc.13th Int. Symp. on High Current Electronics, Tomsk, pp. 384–387.Google Scholar
Oreshko, A. G. 2005 On structure and generation of ball lightnings. In: Proc. of XXXII Conf. on Plasma Physics and Controlled Thermonuclear Fusion, Zvenigorod, pp. 260. Available: www.fpl.gpi.ru. (in Russian).Google Scholar
Oreshko, A. G. 2006 Generation of laboratory ball lightning. J. Phys.: Conf. Ser. 44, 127132.Google Scholar
Oreshko, A. G. 2007a Obtaining of the ball lightning and the prospects of using it for problem of nuclear fusion. In: Proc. XXVIII Int. Conference on Phenomenon in Ionized Gases (ICPIG), Prague, pp. 1884–1887.Google Scholar
Oreshko, A. G. 2007b On domain structures, fields and processes in radiation stars and universe. In: Proc. XXVIII Int. Conf. on Phenomena in Ionized Gases, Prague, pp. 1888–1891. (ISBN: 978-80-87026-01-4).Google Scholar
Oreshko, A. G. 2008 Possibility ball lightning application for nuclear fusion. 35th European Physical Society Conference on Plasma Physics. In: Proc. ECA Vol.32D. Hersonissos, Crete. Report D5.005. Available: http://epsppd.epfl.ch/Hersonissos/pdf/D5_005.pdf.Google Scholar
Oreshko, A. G. 2009 Research of a ball lightning and prospects of it's use for applied purposes, VI Int. Conf. on Plasma Physics and Plasma Technology. Contributed Papers, Vol. 1. Minsk, pp. 137–140.Google Scholar
Oreshko, A. G. 2010a Ball lightning investigations on ‘Prometheus-2’. 37th European Physical Society Conf. on Plasma Physics. Proc. ECA Vol.34A.P5.401. Dublin (ISBN 2-914771-62-2). Available: (http://ocs.ciemat.es/eps2010pap/pdf/P5.401.pdf).Google Scholar
Oreshko, A. G. 2010b Ball lightning generation at ‘Prometheus-2’ installation. In: Proc. of XXXVII Int. Conf. on Plasma Physics and Controlled Thermonuclear Fusion, Zvenigorod. p. 172. Available: www.fpl.gpi.ru.Google Scholar
Oreshko, A. G. 2011 Ball lightning generation research. Int. J. Unconv. Electromagn. Plasma 3 (1–2), 7781.Google Scholar
Oreshko, A. G. and Mavlyudov, T. B. 2011 The effect of hot plasmoids generation in high-current vortex discharge under atmospheric conditions. IEEE Trans. Plasma Sci. 39 (11), 21242125.CrossRefGoogle Scholar
Oreshko, A. G. 2012a The effect of anomalous passing of ball lightning through absorbing filters. 39th European Physical Society Conf. and 16th Int. Congress on Plasma Physics. Proc. ECA Vol.36F. P5.107. Stockholm (ISBN 2-914771-79-7). Available: http://ocs.ciemat.es/epsicpp2012pap/pdf/P5.107.pdf/).Google Scholar
Oreshko, A. G. 2012b The effect of anomalous passage of ball lightning through thick absorbing filters and observation of dark spherical formation. Int. J. Innov. Electr. Power Syst. 4 (2), 141153.Google Scholar
Oreshko, A. G. 2013a On the solution of problem of nuclear fusion on base of ball lightning. 40th European Physical Society Conf. on Plasma Physics. Proc. ECA v. 37D, Report P1.211. Aalto. Available: http://ocs.ciemat.es/eps2013pap/pdf/P1.211.pdf/Google Scholar
Oreshko, A. G. 2013b Ball lightning as extremal existence form of matter in Nature. Proc. XXXI Int. Conf. on Phenomenon in Ionized Gases (ICPIG), Granada.Google Scholar
Oreshko, A. G. 2014 On structure and formation of stars in a giant electric discharge. 41th European Physical Society Conf. on Plasma Physics. Proc ECA, P1.150.Berlin.Google Scholar
Peer, J. and Kendl, A. 2010 Transcranial stimulability of phosphenes by long lightning electromagnetic pulses. Phys. Lett. A 374, 29322935.CrossRefGoogle Scholar
Singer, S. 1971 The Nature of Ball Lightning. New York: Plenum Press.CrossRefGoogle Scholar
Sinkevich, O. A. 1997 Long-lived plasma formations and problems associated with ball lightning. High Temp. 35 (4), 639652; (6), 1109–1134.Google Scholar
Stakhanov, I. P. 1996 On the Physical Nature of Ball Lightning. Moscow: Nauchniy Mir (in Russian).Google Scholar
Stenhoff, M. 1999 Ball Lightning. New York: Kluwer Academic/Plenum Publishers.Google Scholar
Tar, D. 2009 New revelation of lightning ball observation and proposal for a nuclear reactor fusion experiment. In: Proc. 10th Int. Symp. on Ball Lightning (ISBL-08), Kaliningrad, Russia, July 7–12, Vol. 0910: 2089. pp. 135141, arXiv:0910.2089. Bibcode:2009arXiv0910.2089T.Google Scholar
Torchigin, V. P. and Torchigin, A. V. 2004 Behavior of self-confined spherical layer of light radiation in the air atmosphere. Phys. Lett. A 328 (2–3), 189195.CrossRefGoogle Scholar
Turner, J. 1994 The structure and stability of ball lightning. Phil. Trans. R. Soc. A, 247, 83111.Google Scholar
Wurden, v., C., J. and Wurden, G. A., 2011 Free-floating atmospheric pressure ball plasmas. IEEE Trans. on Plasma Science 39 (11), 20782079.Google Scholar