Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-12-04T19:45:58.136Z Has data issue: false hasContentIssue false

An experimental study of photoresist material etching by an atmospheric-pressure plasma jet with Ar/air mixed gas

Published online by Cambridge University Press:  14 March 2013

LIJUN WANG
Affiliation:
State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China ([email protected])
WENJUN NING
Affiliation:
State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China ([email protected])
MINGZHENG FU
Affiliation:
State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China ([email protected])
CHEN WU
Affiliation:
State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China ([email protected])
SHENLI JIA
Affiliation:
State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China ([email protected])

Abstract

In this paper, electrical and optical emission spectrometer (OES) characteristics of an Ar/air atmospheric-pressure plasma jet (APPJ) based on the plasma needle and plasma pencil systems were investigated and analyzed. Electrical measurement results showed that the breakdown and working voltage of the jet increased with the increase of the ratio of air/Ar, and the emission intensity of Ar* significantly decreased. For the plasma needle, when the ratio of air/Ar reached 1, the OES characteristics of Ar/air were similar to those of air plasma, and the main excited species was N2*. For the plasma pencil, when a little air impurity was added in Ar, the emission intensities of N2* species will be significantly increased. Based on these two APPJ systems, photoresist materials were etched, etched results showed that the etched surface was easier to be oxidized with the addition of air into Ar. The etched surface was cleaner with pure Ar plasma with scanning substrate methods than that with the Ar/air mixture. Etched results of higher ratios of air/Ar plasma were similar to those of air plasma.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akishev, Y. S., Grushin, M. S., Deryugin, A. A., Napartovich, A. P. and Trushkin, N. I. 1999b J. Phys. D: Appl. Phys. 32, 23992409.CrossRefGoogle Scholar
Chen, H. H., Weng, C. C., Liao, J. D., Chen, K. M. and Hsu, B. W. 2009 J. Phys. D: Appl. Phys. 42, 135201.CrossRefGoogle Scholar
Choi, Y. H., Kim, J. H., Park, K. H., Ju, W. T. and Hwang, Y. S. 2005 Surf. Coat. Technol. 193, 319324.CrossRefGoogle Scholar
Fauchais, P. and Vardelle, A. 1997 IEEE Trans. Plasma Sci. 25 (6), 12581280.CrossRefGoogle Scholar
Goree, J., Liu, B. and Drake, D. 2006 J. Phys. D: Appl. Phys. 39, 3479.CrossRefGoogle Scholar
Jeong, J. Y., Babayan, S. E., Schuuze, A., Tu, V. J., Park, J., Henins, I., Selwyn, G. S. and Hicks, R. F. 1999 J. Vac. Sci. Technol. A 17 (5), 25812585.CrossRefGoogle Scholar
Jeong, J. Y., Babayan, S. E., Tu, V. J., Park, J., Henins, I., Hicks, R. F. and Selwyn, G. S. 1998 Plasma Sources Sci. Technol. 7, 282285.CrossRefGoogle Scholar
Jung, M. H., Beaudoin, S. P. and Choi, H. S. 2007 J. Electrochem. Soc. 154 (6), H422429.CrossRefGoogle Scholar
Jung, M. H. and Choi, H. S. 2006 Thin Solid Films 515, 22952302.CrossRefGoogle Scholar
Kogelschatz, U. 2002 Plasma Sources Sci. Technol. 11 (3A), A16.CrossRefGoogle Scholar
Kogelschatz, U. 2003 Plasma Chem. Plasma Process. 23, 146.CrossRefGoogle Scholar
Kolb, J. F., Mohamed, A. A. H., Price, R. O., Swanson, R. J., Bowman, A., Chiavarini, R. L., Stacey, M. and Schoenbach, K. H. 2008 Appl. Phys. Lett. 92, 241501.CrossRefGoogle Scholar
Laroussi, M., Hynes, W., Akan, T., Lu, X. and Tendero, C. 2008, IEEE Trans. Plasma Sci. 36 (4), 12981299.CrossRefGoogle Scholar
Li, H., Wang, L., Li, G., Jin, L., Le, P., Zhao, H., Xing, X. and Bao, C. 2011 Plasma Process. Polym. 8, 224229.CrossRefGoogle Scholar
Lu, X., Xiong, Z., Zhao, F., Xian, Y., Xiong, Q., Gong, W., Zou, C., Jiang, Z. and Pan, Y. 2009 Appl. Phys. Lett. 95, 181501.CrossRefGoogle Scholar
Medard, N., Soutif, J. C. and Poncin-Epaillard, F. 2002 Langmuir 18, 2246.CrossRefGoogle Scholar
Motomura, H., Matsuba, H., Kawata, M. and Jinno, M. 2007 Japan. J. Appl. Phys. 46 (36–40), 939941.CrossRefGoogle Scholar
Niemi, K., Schulz-vonder Gathen, V. der Gathen, V. and Dobbe, H. F. 2005 Plasma Sources Sci. Technol. 14, 375.CrossRefGoogle Scholar
Schutze, A., Jeong, J. Y., Babayan, S. E., Park, J., Selwyn, G. S. and Hicks, R. F. 1998 IEEE Trans. Plasma Sci. 26 (6), 16851693.CrossRefGoogle Scholar
Seo, Y. S., Mohamed, A. H., Woo, K. C., Lee, H. W., Lee, J. K. and Kim, K. T. 2010 IEEE Trans. Plasma Sci. 38 (2), 29542962.CrossRefGoogle Scholar
Sladek, R. E. J. and Stoffels, E. 2005 J. Phys. D: Appl. Phys. 38, 17161721.CrossRefGoogle Scholar
Stoffels, E., Kiedt, I. E. and Sladek, R. E. J. 2003 J. Phys. D: Appl. Phys. 36, 29082913.CrossRefGoogle Scholar
Takemura, Y., Yamaguchi, N. and Hara, T. 2008 Japan. J. Appl. Phys. 47 (7), 56445647.CrossRefGoogle Scholar
Vogelsang, A., Ohl, A., Steffen, H., Foest, R., Schroder, K. and Weltmann, K. D. 2010 Plasma Process. Polym. 7, 1624.CrossRefGoogle Scholar
Yang, S. and Gupta, M. C. 2004 Surf. Coat. Technol. 187, 172.CrossRefGoogle Scholar
Yanguas-Gil, A., Focke, K., Benedickt, J. and von Keudell, A. 2007 J. Appl. Phys. 27, 141.Google Scholar
Yoshiki, H., Taniguchi, K. and Horiike, Y. 2002 Japan. J. Appl. Phys. 41 (9), 57975798.CrossRefGoogle Scholar