Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-12-04T19:42:11.689Z Has data issue: false hasContentIssue false

An efficient way to evidence and to measure the metal ion fraction in high power impulse magnetron sputtering (HiPIMS) post-discharge with Pt, Au, Pd and mixed targets

Published online by Cambridge University Press:  14 December 2016

S. Cuynet*
Affiliation:
Groupe de Recherche sur l’Energétique des Milieux Ionisés (GREMI), UMR7344 Université d’Orléans – CNRS, 14 rue d’Issoudun BP6744, F-45067 Orléans CEDEX 2, France
T. Lecas
Affiliation:
Groupe de Recherche sur l’Energétique des Milieux Ionisés (GREMI), UMR7344 Université d’Orléans – CNRS, 14 rue d’Issoudun BP6744, F-45067 Orléans CEDEX 2, France
A. Caillard
Affiliation:
Groupe de Recherche sur l’Energétique des Milieux Ionisés (GREMI), UMR7344 Université d’Orléans – CNRS, 14 rue d’Issoudun BP6744, F-45067 Orléans CEDEX 2, France
P. Brault
Affiliation:
Groupe de Recherche sur l’Energétique des Milieux Ionisés (GREMI), UMR7344 Université d’Orléans – CNRS, 14 rue d’Issoudun BP6744, F-45067 Orléans CEDEX 2, France
*
Email address for correspondence: [email protected]

Abstract

The proportion of metal ions in a high power impulse magnetron sputtering discharge is key information for the potential development of new materials and new layer architectures deposited by this technique. This paper aims to measure this proportion by using a homemade system consisting of a quartz crystal microbalance and a grid energy analyser assembly. Such a system yields relevant results on the composition of the post-discharge depending on the nature of the gas (Ar, Kr, Xe) and the target materials (Pt, Pd, Au, $\text{Pt}_{50}\text{Au}_{50}$ and $\text{Pt}_{5}\text{Pd}_{95}$ ). In our conditions, the highest proportion of metal ions in the post-discharge are obtained by using Ar gas and reaches 10 %, 12 %, 50 %, 19 % and 88 % for Pt, Au, Pd, $\text{Pt}_{50}\text{Au}_{50}$ and $\text{Pt}_{5}\text{Pd}_{95}$ targets, respectively.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ait Aissa, K., Achour, A., Camus, J., Le Brizoual, L., Jouan, P. Y. & Djouadi, M. A. 2014 Comparison of the structural properties and residual stress of AlN films deposited by dc magnetron sputtering and high power impulse magnetron sputtering at different working pressures. Thin Solid Films 550, 264267.Google Scholar
Alami, J., Persson, P. O. A., Music, D., Gudmundsson, J. T., Bohlmark, J. & Helmersson, U. 2005 Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces. J. Vac. Sci. Technol. A 23, 278280.Google Scholar
Alami, J., Sarakinos, K., Mark, G. & Wuttig, M. 2006 On the deposition rate in a high power pulsed magnetron sputtering discharge. Appl. Phys. Lett. 89, 154104.Google Scholar
Anders, A. 2008 Self-sputtering runaway in high power impulse magnetron sputtering: the role of secondary electrons and multiply charged metal ions. Appl. Phys. Lett. 92, 201501.Google Scholar
Anders, A. 2011 Discharge physics of high power impulse magnetron sputtering. Surf. Coatings Technol. 205 (suppl. 2), S1S9.Google Scholar
Baghriche, O., Ehiasarian, A. P., Kusiak-Nejman, E., Pulgarin, C., Sanjines, R., Morawski, A. W. & Kiwi, J. 2012 High power impulse magnetron sputtering (HIPIMS) and traditional pulsed sputtering (DCMSP) Ag-surfaces leading to E. coli inactivation. J. Photochem. Photobiol. A 227, 1117.CrossRefGoogle Scholar
Čapek, J., Hála, M., Zabeida, O., Klemberg-Sapieha, J. E. & Martinu, L. 2013 Deposition rate enhancement in HiPIMS without compromising the ionized fraction of the deposition flux. J. Phys. D: Appl. Phys. 46, 205205.Google Scholar
Cuynet, S., Caillard, A., Lecas, T., Bigarré, J., Buvat, P. & Brault, P. 2014 Deposition of Pt inside fuel cell electrodes using high power impulse magnetron sputtering. J. Phys. D: Appl. Phys. 47, 272001.Google Scholar
Ehiasarian, A. P., Münz, W. D., Hultman, L., Helmersson, U. & Petrov, I. 2003 High power pulsed magnetron sputtered CrNx films. Surf. Coatings Technol. 163–164, 267722.Google Scholar
Fox, Gr. & Krupanidhi, S. B. 1994 Dependence of perovskite/pyrochlore phase formation on oxygen stoichiometry in PLT thin films. J. Mater. Res. 9, 699711.CrossRefGoogle Scholar
Green, K. M., Hayden, D. B., Juliano, D. R. & Ruzic, D. N. 1997 Determination of flux ionization fraction using a quartz crystal microbalance and a gridded energy analyzer in an ionized magnetron sputtering system. Rev. Sci. Instrum. 68, 45554560.CrossRefGoogle Scholar
Hayden, D. B., Juliano, D. R., Green, K. M., Ruzic, D. N., Weiss, C. A., Ashtiani, K. A. & Licata, T. J. 1998 Characterization of magnetron-sputtered partially ionized aluminum deposition. J. Vac. Sci. Technol. A 16, 624627.Google Scholar
Helmersson, U., Lattemann, M., Bohlmark, J., Ehiasarian, A. P. & Gudmundsson, J. T. 2006 Ionized physical vapor deposition (IPVD): a review of technology and applications. Thin Solid Films 513, 124.Google Scholar
Hopwood, J. 1998 Ionized physical vapor deposition of integrated circuit interconnects. Phys. Plasmas 5, 1624.Google Scholar
Hovsepian, P. E., Ehiasarian, A. P. & Petrov, I. 2014 Structure evolution and properties of TiAlCN/VCN coatings deposited by reactive HIPIMS. Surf. Coatings Technol. 257, 3847.Google Scholar
Hubička, Z., Kment, Š., Olejníček, J., Čada, M., Kubart, T., Brunclíková, M., Kšírová, P., Adámek, P. & Remeš, Z. 2013 Deposition of hematite $\text{Fe}_{2}\text{O}_{3}$ thin film by DC pulsed magnetron and DC pulsed hollow cathode sputtering system. Thin Solid Films 549, 184191.CrossRefGoogle Scholar
Konstantinidis, S., Dauchot, J. P. & Hecq, M. 2006 Titanium oxide thin films deposited by high-power impulse magnetron sputtering. Thin Solid Films 515, 11821186.CrossRefGoogle Scholar
Kouznetsov, V., Macák, K., Schneider, J. M., Helmersson, U. & Petrov, I. 1999 A novel pulsed magnetron sputter technique utilizing very high target power densities. Surf. Coatings Technol. 122, 290293.Google Scholar
Kubart, T., Čada, M., Lundin, D. & Hubička, Z. 2014 Investigation of ionized metal flux fraction in HiPIMS discharges with Ti and Ni targets. Surf. Coatings Technol. 238, 152157.Google Scholar
Lin, J., Sproul, W. D., Wei, R. & Chistyakov, R. 2014 Diamond like carbon films deposited by HiPIMS using oscillatory voltage pulses. Surf. Coatings Technol. 258, 12121222.Google Scholar
Lundin, D., Čada, M. & Hubička, Z. 2015 Ionization of sputtered Ti, Al, and C coupled with plasma characterization in HiPIMS. Plasma Sources Sci. Technol. 24, 035018.Google Scholar
Lundin, D., Larsson, P., Wallin, E., Lattemann, M., Brenning, N. & Helmersson, U. 2008 Cross-field ion transport during high power impulse magnetron sputtering. Plasma Sources Sci. Technol. 17, 35021.Google Scholar
Macák, K., Kouznetsov, V., Schneider, J., Helmersson, U. & Petrov, I. 2000 Ionized sputter deposition using an extremely high plasma density pulsed magnetron discharge. J. Vac. Sci. Technol. A 18, 15331537.CrossRefGoogle Scholar
Nakamura, K., Wakayama, A. & Yukimura, K. 2007 Effects of reactive gas addition on ionization of metal atoms in droplet-free metal ion sources. Surf. Coatings Technol. 201, 66556659.Google Scholar
Nakao, S., Yukimura, K., Nakano, S. & Ogiso, H. 2013 DLC coating by HiPIMS: the influence of substrate bias voltage. IEEE Trans. Plasma Sci. 41, 18191829.Google Scholar
Pakhare, D. & Spivey, J. 2014 A review of dry ( $\text{CO}_{2}$ ) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 43, 78137837.Google Scholar
Partridge, J. G., Mayes, E. L. H., McDougall, N. L., Bilek, M. M. M. & McCulloch, D. G. 2013 Characterization and device applications of ZnO films deposited by high power impulse magnetron sputtering (HiPIMS). J. Phys. D: Appl. Phys. 46, 165105.Google Scholar
Poolcharuansin, P., Bowes, M., Petty, T. J. & Bradley, J. W. 2012 Ionized metal flux fraction measurements in HiPIMS discharges. J. Phys. D: Appl. Phys. 45, 322001.Google Scholar
Ratova, M., West, G. T. & Kelly, P. J. 2014 Optimisation of HiPIMS photocatalytic titania coatings for low temperature deposition. Surf. Coatings Technol. 250, 713.Google Scholar
Samuelsson, M., Lundin, D., Jensen, J., Raadu, M. A., Gudmundsson, J. T. & Helmersson, U. 2010 On the film density using high power impulse magnetron sputtering. Surf. Coatings Technol. 205, 591596.Google Scholar
Sarakinos, K., Alami, J. & Konstantinidis, S. 2010 High power pulsed magnetron sputtering: a review on scientific and engineering state of the art. Surf. Coatings Technol. 204, 16611684.Google Scholar
Stranak, V., Hubicka, Z., Cada, M., Drache, S., Tichy, M. & Hippler, R. 2014 Investigation of ionized metal flux in enhanced high power impulse magnetron sputtering discharges. J. Appl. Phys. 115, 153301.Google Scholar
Velicu, I. L., Neagu, M., Chiriac, H., Tiron, V. & Dobromir, M. 2012 Structural and magnetic properties of FeCuNbSiB thin films deposited by HiPIMS. IEEE Trans. Magn. 48, 13361339.Google Scholar
Wang, Z., Zhang, D., Ke, P., Liu, X. & Wang, A. 2015 Influence of substrate negative bias on structure and properties of TiN coatings prepared by hybrid HIPIMS method. J. Mater. Sci. Technol. 31, 3742.CrossRefGoogle Scholar
Yu, W., Porosoff, M. D. & Chen, J. G. 2012 Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chem. Rev. 112, 57805817.Google Scholar