Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-29T05:06:52.605Z Has data issue: false hasContentIssue false

Amplitude saturation effect of a laser-driven plasma beat-wave on electron accelerations

Published online by Cambridge University Press:  24 March 2015

D. N. Gupta*
Affiliation:
Department of Physics and Astrophysics, University of Delhi, Delhi 110 007, India
Mamta Singh
Affiliation:
Department of Physics and Astrophysics, University of Delhi, Delhi 110 007, India
H. Suk
Affiliation:
Department Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 500 712, South Korea
*
Email address for correspondence: [email protected]

Abstract

A large-amplitude plasma beat-wave driven by two lasers (differing in frequencies equal to the plasma frequency) can accelerate the plasma electrons to a higher energy level. As the plasma beat-wave grows, it becomes susceptible to oscillating two-stream instability. The decayed sideband plasma wave couples with the pump wave to divert its energy by the instability, and saturates it. The saturated amplitude of the plasma beat-wave traps the electrons more effectively to accelerate them to higher energy. The saturation of plasma beat-wave amplitude is shown to have a significant effect in an electron energy gain.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aliev, Y. M., Tolkachev, O. M. and Stenflo, L. 1988 Phys. Rev. A 38, 4899.CrossRefGoogle Scholar
Bingham, R., Mendonca, J. T. and Shukla, P. K. 2004 Plasma Phys. Control. Fusion 46, R1.CrossRefGoogle Scholar
Divol, L., Berger, R. L., Cohen, B. I., Williams, E. A., Langdon, A. B., Lasinski, B. F., Froula, D. H. and Glenzer, S. H. 2003 Phys. Plasmas 10, 1822.CrossRefGoogle Scholar
Esarey, E., Sprangle, P., Krall, J. and Ting, A. 1996 IEEE Trans. Plasma Sci. 24, 252.CrossRefGoogle Scholar
Gupta, D. N., Hur, M. S. and Suk, H. 2006 J. Appl. Phys. 100, 103101.CrossRefGoogle Scholar
Gupta, D. N., Singh, K. P., Sharma, A. K. and Jaiman, N. K. 2004 Phys. Plasmas 11, 5250.CrossRefGoogle Scholar
Joshi, C. 2007 Phys. Plasmas 14, 055501.CrossRefGoogle Scholar
Katsouleas, T. and Bingham, R. 1996 Phys. Rev. Lett. 24, 249.Google Scholar
Kitagawa, Y.et al. 1992 Phys. Rev. Lett. 68, 48.CrossRefGoogle Scholar
Liu, C. S. and Tripthai, V. K. 1986 Phys. Rep. 130, 162.CrossRefGoogle Scholar
Mangles, S. P. D., Murphy, C. D., Najmudin, Z., Thomas, A. G. R., Collier, J. L., Dangor, A. E., Dival, E. J., Foster, P. S., Gallacher, J. G., Hooker, C. J., Jaroszynaski, D. A., Langley, A. J., Mori, W. B., Norreys, P. A., Tsung, F. S., Viskup, R., Walton, B. R. and Krushelnick, K. 2004 Nature 431, 535.CrossRefGoogle Scholar
Modena, A., Najmudin, Z., Dangor, A. E., Clayton, C. E., Marsh, K. A., Joshi, C., Malka, V., Darrow, C. B. and Danson, C. 1996 IEEE Trans. Plasma Sci. 24, 289.CrossRefGoogle Scholar
Moulin, F.et al. 1994 Phys. Plasmas 1, 1318.CrossRefGoogle Scholar
Nicholson, D. R. 1981 Phys. Fluids 24, 908.CrossRefGoogle Scholar
Perry, M. D. and Mourou, G. A. 1994 Science 264, 917.CrossRefGoogle Scholar
Rosenbluth, M. N. and Liu, C. S. 1972 Phys. Rev. Lett. 29, 701.CrossRefGoogle Scholar
Shukla, P. K. 2009 J. Plasma Phys. 75, 15.CrossRefGoogle Scholar
Shukla, P. K., Stenflo, L. and Bingham, R. 2010 J. Plasma Phys. 76, 845.CrossRefGoogle Scholar
Shvets, G. and Fisch, N. J. 1997 Phys. Rev. E 55, 6297.CrossRefGoogle Scholar
Suk, H., Barov, N., Rosenzweig, J. B. and Esarey, E. 2001 Phys. Rev. Lett. 86, 1011.CrossRefGoogle Scholar
Tajima, T. and Dawson, J. M. 1979 Phys. Rev. Lett. 43, 267.CrossRefGoogle Scholar
Thomson, J. J., Faehl, R. J. and Kruer, W. L. 1973 Phys. Rev. Lett. 31, 918.CrossRefGoogle Scholar
Umstadter, D. 2001 Phys. Plasmas 8, 1774.CrossRefGoogle Scholar