Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T06:32:12.210Z Has data issue: false hasContentIssue false

A unified picture of the parallel whistler mode instability

Published online by Cambridge University Press:  13 March 2009

Ronald W. Landau
Affiliation:
Department of Physics and Astronomy, Tel-Aviv University
Sami Cuperman
Affiliation:
Department of Physics and Astronomy, Tel-Aviv University

Abstract

A parametric investigation of parallel right-hand electromagnetic waves below the electron cyclotron frequency has been carried out; this wave is unstable for anisotropic temperatures if T⊥ <T1. Simple analytic expressions for the maximum growth rate have been obtained for the full range of the parameters β1, _ and A_ ≡ (T⊥/T1)_ -1 as they range from zero to infinity. It is shown that the parameter P ≡ β1_A_(A_+1)2 has an important role: (i) for P ≪1, the results of Kennel & Petschek (1966), for large resonant velocities, hold; (ii) for P ≫ 1, the results of Sudan (1963, 1965) for small resonant velocities are recovered; (iii) for P ≫ 1 and A ≫ 1, the growth rate approaches an upper limit (near the plasma frequency for hot plasmas) identical to the zero field instability of Weibel (1959). For the case P ≫ l and moderate A values (i.e. Sudan's regime), analytic expressions for the rates of growth are calculated without restriction on their magnitude.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barberio-Corsetti, O. 1970 Princeton University MATT-773.Google Scholar
Bodin, H. A. B., McCartan, J., Newton, A. A. & Wolf, G. H. 1969 Proc. Conf. on Plasma Physics and Controlled Nuclear Fusion Research, Novosibirsk, vol. 2. IAEA.Google Scholar
Brice, N. & Lucas, C. 1971 J. Geophys. Res. 76, 900.CrossRefGoogle Scholar
Copson, E. T. 1967 Asymptotic Expansions. Cambridge University Press.Google Scholar
Davidson, R. C. & Wu, C. S. 1970 Phys. Fluids, 13, 1407CrossRefGoogle Scholar
Deforest, S. E. & McIlwain, C. E. 1971 J. Geophys. Res. 76, 3587.CrossRefGoogle Scholar
Davidson, R. C., Hammer, D. A., Haber, I. & Wagner, C. E. 1972 Phys. Fluids, 15, 317.CrossRefGoogle Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion Function. Academic.Google Scholar
Hamasaki, S. 1968 Phys. Fluids, 11, 2724.CrossRefGoogle Scholar
Hollweg, J. V. & , H. J. 1970 J. Geophys.Res. 75, 5297.CrossRefGoogle Scholar
Jackson, J. D. 1960 Plasma Phys. 1, 171.Google Scholar
Kalman, G., Montes, C. & Quemada, D. 1968 Phys. Fluids, 11, 1797.CrossRefGoogle Scholar
Kennel, C. F. & Petschek, H. E. 1966 J. Geophys. Res. 71, 1.CrossRefGoogle Scholar
Landau, R. W. & Cuperman, S. 1970 J. Plasma Phys. 4, 13.CrossRefGoogle Scholar
Landau, R. W. & Cuperman, S. 1971 J. Plasma Phys. 6, 495.CrossRefGoogle Scholar
Montgomery, D. C. & Tidman, D. A. 1964 Plasma Kinetic Theory. McGraw Hill.Google Scholar
Pilipp, W. & Volk, H. J. 1971 J. Plasma Phys. 6, 1.CrossRefGoogle Scholar
Scharer, J. E. & Trivelpiece, A. W. 1967 Phys. Fluids, 10, 591.CrossRefGoogle Scholar
Smith, A. 1969 J. Plasma Phys. 3, 281.CrossRefGoogle Scholar
Sudan, R. N. 1963 Phys. Fluids, 6, 57.CrossRefGoogle Scholar
Sudan, R. N. 1965 Phys. Fluids, 8, 152.Google Scholar
Weibel, E. S. 1959 Phys. Rev. Letters, 2, 83.CrossRefGoogle Scholar
Williams, J. D. 1971 NOAA Tech. Mem. ERL SEL-19.Google Scholar