Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T21:40:37.619Z Has data issue: false hasContentIssue false

Systematic approximations for magnetized transit-time interactions

Published online by Cambridge University Press:  13 March 2009

A. Melatos
Affiliation:
Department of Theoretical Physics and Research Centre for Theoretical Astrophysics, School of Physics, University of Sydney, NSW 2006, Australia
P. A. Robinson
Affiliation:
Department of Theoretical Physics and Research Centre for Theoretical Astrophysics, School of Physics, University of Sydney, NSW 2006, Australia

Abstract

A systematic procedure is given for generating analytic approximations to the wave–particle energy transfer in magnetized transit-time interactions. The procedure can be applied to any wave-packet field structure, and yields especially simple results in the physically important limits of (i) small and large Larmor radius and (ii) small and large values of the ratio of the wave frequency to the cyclotron frequency. In many applications, the approximations developed here are the only viable means of calculating the wave—particle energy transfer, because the exact analytic theory and numerical test-particle calculations are too demanding computationally.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bender, C. M. & Orszag, S. A. 1978 Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill.Google Scholar
Bleistein, N. & Handelsman, R. A. 1986 Asymptotic Expansion of Integrals. Dover.Google Scholar
Gradshteyn, I. S. & Ryzhik, I. M. 1980 Table of integrals, Series and Products. Academic.Google Scholar
Handelsman, R. A. & Lew, J. S. 1969 Arch. Rat. Mech. Anal. 35, 382.CrossRefGoogle Scholar
Jannsen, G. C. A. M., Bonnie, J. H. M., Granneman, E. H. A., Krementsov, V. I. & Hopman, H. J. 1984 Phys. Fluids 27, 726.CrossRefGoogle Scholar
Lamb, B. M., Dimonte, G. & Morales, G. J. 1984 Phys. Fluids 27, 1401.CrossRefGoogle Scholar
Melatos, A. & Robinson, P. A. 1993a Phys. Fluids B 5, 1045.CrossRefGoogle Scholar
Melatos, A. & Robinson, P. A. 1993b Phys. Fluids B 5, 2751.CrossRefGoogle Scholar
Morales, G. J. & Lee, Y. C. 1974 Phys. Rev. Lett. 33, 1534.CrossRefGoogle Scholar
Newman, D. L., Robinson, P. A. & Goldman, M. V. 1989 Phys. Rev. Lett. 62, 2132.CrossRefGoogle Scholar
Newman, P. L., Winglee, R. M., Robinson, P. A., Glanz, J. & Goldman, M. V. 1990 Phys. Fluids B 2, 2600.CrossRefGoogle Scholar
Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. 1992 Numerical Recipes, 2nd edn. Cambridge University Press.Google Scholar
Robinson, P. A. 1989 Phys. Fluids B 1, 490.CrossRefGoogle Scholar
Robinson, P. A. 1991 Phys. Fluids B 3, 545.CrossRefGoogle Scholar
Robinson, P. A., Melatos, A. & Rozmus, W. 1994 Phys. Plasmas (submitted).Google Scholar
Robinson, P. A. & Newman, D. L. 1990 Phys. Fluids B 2, 3120.CrossRefGoogle Scholar
Robinson, P. A. & Newman, D. L. 1991 J. Geophys. Res. 96, 17733.CrossRefGoogle Scholar
Wong, A. Y., Leung, P. & Eggleston, D. 1977 Phys. Rev. Lett. 39, 1407.CrossRefGoogle Scholar