Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T21:38:10.637Z Has data issue: false hasContentIssue false

Structures of reconnection layers based on the ideal magnetohydrodynamic equations

Published online by Cambridge University Press:  13 March 2009

Wenlong Dai
Affiliation:
Army High Performance Computing Research Center/University of Minnesota, 1100 Washington Avenue South, Minneapolis, Minnesota 55415, U.S.A.
Paul R. Woodward
Affiliation:
Army High Performance Computing Research Center/University of Minnesota, 1100 Washington Avenue South, Minneapolis, Minnesota 55415, U.S.A.

Abstract

A Riemann solver is used, and a set of numerical simulations are performed, to study the structures of reconnection layers in the approximation of the one- dimensional ideal MHD equations. Since the Riemann solver may solve general Riemarin problems, the model used in this paper is more general than those in previous investigations on this problem. Under the conditions used in the previous investigations, the structures we obtained are the same. Our numerical simulations show quantitative agreement with those obtained through the Riemann solver.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Biernat, H. K., Heyn, M. F., & Rijnbeek, R. P. 1989 J. Geophys. Res. 94, 287.CrossRefGoogle Scholar
Brio, M., & Wu, C. C. 1988 J. Comput. Phys. 75, 400.CrossRefGoogle Scholar
Courant, R., & Friedrichs, K. O. 1967 Supersonic Flow and Shock Waves, 5th edn.Interscience.Google Scholar
Dai, W., & Woodward, P. R. 1994 An approximate Riemann solver for ideal magnetohydrodynamics. J. Comput. Phys. (in press).CrossRefGoogle Scholar
Dungey, J. W. 1961 Phys. Rev. Lett. 6, 47.CrossRefGoogle Scholar
Giz, A. T. 1987 Parker instability in the interstellar medium with a realistic gravitational field and a computer code for magnetohydrodynamics. Ph.D thesis, University of California, Berkeley.Google Scholar
Gogosov, V. V. 1961 J. Appl. Math. Mech. 25, 148.CrossRefGoogle Scholar
Heyn, M. F., Biernat, H. K., Rijnbeek, R. P., & Semenov, V. S. 1988 J. Plasma Phys. 40, 235.CrossRefGoogle Scholar
Jeffrey, A., & Taniuti, T. 1964 Non-Linear Wave Propagation. Academic.Google Scholar
Kantrowitz, A. R., & Petscheck, H. E. 1966 Plasma Physics in Theory and Application. McGraw-Hill.Google Scholar
Kulikovskiy, A. G., & Lyubimov, G. A. 1965 Magnetohydrodynamics. Addison-Wesley.Google Scholar
Landau, L. D., & Lifshitz, G.A. 1964 Electrodynamics of Continuous Media, 2nd edn.Pergamon.Google Scholar
Lee, L. C., & Lin, Y. 1994 Structure of the magnetopause reconnection layer. Space Sci. Rev. (in press).Google Scholar
Levy, R. H., Petschek, H. E., & Siscoe, G. L. 1964 AIAA J. 2, 2065.CrossRefGoogle Scholar
Petschek, H. E. 1964 Proceedings of AAS–NASA Symposium on the Physics of Solar Flares, p. 425. NASA Special Publication SP-50.Google Scholar
Van Leer, B. 1974 J. Comput. Phys. 14, 361.CrossRefGoogle Scholar
Wu, C. C. 1988 J. Geophys. Res. 93, 3969.CrossRefGoogle Scholar
Wu, C. C. 1990 J. Geophys. Res. 95, 8149.CrossRefGoogle Scholar
Wu, C. C., & Kennel, C. F. 1992 Phys. Rev. Lett. 68, 56.CrossRefGoogle Scholar
Zachary, A. L., & Colella, P. 1992 J. Comput. Phys. 99, 341.CrossRefGoogle Scholar