Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T08:50:47.517Z Has data issue: false hasContentIssue false

Simultaneous existence of stochastic and ohmic heating in capacitive discharges

Published online by Cambridge University Press:  14 March 2019

Khristo Tarnev*
Affiliation:
Faculty of Applied Mathematics and Informatics, Technical University Sofia, 8 Kliment Ohridski Blvd., Sofia 1000, Bulgaria
Rositsa Pavlova
Affiliation:
Faculty of Applied Mathematics and Informatics, Technical University Sofia, 8 Kliment Ohridski Blvd., Sofia 1000, Bulgaria
*
Email address for correspondence: [email protected]

Abstract

A one-dimensional particle-in-cell/Monte Carlo (PIC/MCC) model of low-pressure capacitive discharges with a large discharge gap is presented in the paper. The results from the model are for the dependence of the plasma parameters on the pressure and on the discharge radius. The study is directed to the heating mechanisms in the discharge. It is shown that the ohmic (Joule) heating in the plasma bulk could act simultaneously with the stochastic heating in the region of the plasma–sheath boundary. In confirmation of the results of the model, experimental results showing qualitatively the same behaviour are presented.

Type
Research Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chabert, P. & Braithwaite, N. 2011 Physics of radio-frequency plasmas. Cambridge University Press.Google Scholar
Donkó, Z. 2011 Particle simulation methods for studies of low-pressure plasma sources. Plasma Sources Sci. Technol. 20, 024001.Google Scholar
Godyak, V. A., Piejak, R. B. & Alexandrovich, B. M. 1992 Measurements of electron energy distribution in low-pressure RF discharges. Plasma Sources Sci. Technol. 1, 3658.Google Scholar
Heil, B. G., Brinkmann, R. P. & Czarnetzki, U. 2008 A hybrid, one-dimensional model of capacitively coupled radio-frequency discharges. J. Phys. D: Appl. Phys. 41, 225208.Google Scholar
Hemke, T., Eremin, D., Mussenbrock, T., Derzsi, A., Donkó, Z., Dittmann, K., Meichsner, J. & Schulze, J. 2013 Ionization by bulk heating of electrons in capacitive radio frequency atmospheric pressure microplasmas. Plasma Sources Sci. Technol. 22, 015012.Google Scholar
Hwang, S. W., Lee, H. & Lee, H. J. 2014 Effect of electron Monte Carlo collisions on a hybrid simulation of a low-pressure capacitively coupled plasma. Plasma Sources Sci. Technol. 23, 065040.Google Scholar
Janev, R. K., Reiter, D. & Samm, U.2003 Collision processes in low-temperature hydrogen plasmas. FZ-Juelich Rep. 4105. Forschungszentrum Jülich.Google Scholar
Karoulina, E. V. & Lebedev, Y. A. 1988 The influence of the electron transport cross sectional shape on electron energy distribution functions in DC and microwave plasmas. J. Phys. D: Appl. Phys. 21, 411417.Google Scholar
Kawamura, E., Lieberman, M. A. & Lichtenberg, A. J. 2014 Electron heating in low pressure capacitive discharges revisited. Phys. Plasmas 21 (12), 123505.Google Scholar
Kortshagen, U., Parker, G. J. & Lawler, J. E. 1996 Comparison of Monte Carlo simulations and nonlocal calculations of the electron distribution function in a positive column plasma. Phys. Rev. E 54, 67466761.Google Scholar
Lafleur, T. & Chaber, P. 2015 Is collisionless heating in capacitively coupled plasmas really collisionless? Plasma Sources Sci. Technol. 24, 044002.Google Scholar
Lafleur, T., Chabert, P. & Booth, J. P. 2014 Electron heating in capacitively coupled plasmas revisited. Plasma Sources Sci. Technol. 23, 035010.Google Scholar
Lieberman, M. A. & Lichtenberg, A. J. 2005 Principles of Plasma Discharges and Materials Processing. John Wiley & Sons.Google Scholar
Lishev, S., Paunska, T., Shivarova, A. & Tarnev, K. 2012 Matrix of small-radius radio-frequency discharges as a volume-production based source of negative hydrogen ions. Rev. Sci. Instrum. 83, 02A702.Google Scholar
Liu, Y.-X., Korolov, I., Schüngel, E., Wang, Y.-N., Donkó, Z. & Schulze, J. 2017 Striations in electronegative capacitively coupled radio-frequency plasmas: analysis of the pattern formation and the effect of the driving frequency. Plasma Sources Sci. Technol. 26, 055024.Google Scholar
Liu, Y.-X., Schüngel, E., Korolov, I., Donkó, Z., Wang, Y.-N. & Schulze, J. 2016 Experimental observation and computational analysis of striations in electronegative capacitively coupled radio-frequency plasmas. Phys. Rev. Lett. 116, 255002.Google Scholar
Longo, S. 2006 Monte Carlo simulation of charged species kinetics in weakly ionized gases. Plasma Sources Sci. Technol. 15, S181S188.Google Scholar
Pavlova, R., Gilev, B. & Tarnev, K. 2018 Axial evolution of the electron energy distribution in capacitive discharges. AIP Conf. Proc. 2048, 030007.Google Scholar
Petrova, T., Benova, E., Petrov, G. & Zhelyazkov, I. 1999 Self-consistent axial modeling of surface-wave-produced discharges at low and intermediate pressures. Phys. Rev. E 60, 875886.Google Scholar
Phelps, A. V. 1994 The application of scattering cross sections to ion flux models in discharge sheaths. J. Appl. Phys. 76, 747753.Google Scholar
Phelps, A. V.Phelps database, www.lxcat.net, retrieved on November 19, 2017.Google Scholar
Schulze, J., Schüngel, E., Donkó, Z., Luggenhölscher, D. & Czarnetzki, U. 2010 Phase resolved optical emission spectroscopy: a non-intrusive diagnostic to study electron dynamics in capacitive radio frequency discharges. J. Phys. D: Appl. Phys. 43, 124016.Google Scholar
Schulze, J., Derzsi, A., Dittmann, K., Hemke, T., Meichsner, J. & Donkó, Z. 2011 Ionization by drift and ambipolar electric fields in electronegative capacitive radio frequency plasmas. Phys. Rev. Lett. 107, 275001.Google Scholar
Schulze, J., Donkó, Z., Lafleur, T., Wilczek, S. & Brinkmann, R. P. 2018 Spatio-temporal analysis of the electron power absorption in electropositive capacitive RF plasmas based on moments of the Boltzmann equation. Plasma Sources Sci. Technol. 27, 055010.Google Scholar
Sun, A., Becker, M. M. & Loffhagen, D. 2016 PIC/MCC simulation of capacitively coupled discharges: effect of particle management and integration. Comput. Phys. Commun. 206, 3544.Google Scholar
Tarnev, K., Koleva, I., Lishev, S., Paunska, T., Iordanova, S. & Shivarova, A. 2012 Mode transition in a small-radius planar-coil inductively-driven discharge. In Proceedings of XXI Europhysics Conference on Atomic and Molecular Physics of Ionized Gases, (ESCAMPIG XXI), Viana do Castelo, Portugal, European Physical Society.Google Scholar
Tarnev, K. & Pavlova, R. 2018 Small Radius Capacitive Discharges. AIP Conf. Proc. 2048, 030008.Google Scholar
Turner, M. M. 1995 Pressure heating of electrons in capacitively coupled rf discharges. Phys. Rev. Lett. 75, 13121315.Google Scholar
Turner, M. M. 2006 Kinetic properties of particle-in-cell simulations compromised by Monte Carlo collisions. Phys. Plasmas 13, 033506.Google Scholar
Vender, D. & Boswell, R. W. 1990 Numerical modeling of low-pressure RF plasmas. IEEE Trans. Plasma Sci. 18, 725732.Google Scholar
Vender, D. & Boswell, R. W. 1992 Electron–sheath interaction in capacitive radiofrequency plasmas. J. Vac. Sci. Technol. A 10, 13311338.Google Scholar
Verboncoeur, J. P. 2005 Particle simulation of plasmas: review and advances. Plasma Phys. Control. Fusion 47, A231A260.Google Scholar
Wilczek, S., Trieschmann, J., Eremin, D., Brinkmann, R. P., Schulze, J., Schuengel, E., Derzsi, A., Korolov, I., Hartmann, P., Donkó, Z. et al. 2016 Kinetic interpretation of resonance phenomena in low pressure capacitively coupled radio frequency plasmas. Phys. Plasmas 23, 063514.Google Scholar
Wilczek, S., Trieschmann, J., Schulze, J., Schuengel, E., Brinkmann, R. P., Derzsi, A., Korolov, I., Donkó, Z. & Mussenbrock, T. 2015 The effect of the driving frequency on the confinement of beam electrons and plasma density in low-pressure capacitive discharges. Plasma Sources Sci. Technol. 24, 024002.Google Scholar
Zhu, X.-M., Chen, W.-C., Li, J., Cheng, Z.-W. & Pu, Y.-K. 2012 Spatial evolution of the electron energy distribution function in a low-pressure capacitively coupled plasma containing argon and krypton. Plasma Sources Sci. Technol. 21, 045009.Google Scholar