Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T06:23:42.441Z Has data issue: false hasContentIssue false

Rotation and shear control of a weakly magnetized plasma column using current injection by emissive electrodes

Published online by Cambridge University Press:  14 June 2021

Victor Désangles
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, Lyon, F-69342, France
Guillaume Bousselin
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, Lyon, F-69342, France
Alexandre Poyé
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, Lyon, F-69342, France
Nicolas Plihon*
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, Lyon, F-69342, France
*
Email address for correspondence: [email protected]

Abstract

The evolution of the radial profile of the rotation of a weakly magnetized plasma column is investigated experimentally in a radio-frequency argon plasma at low pressure when a strong electron current is emitted by large emissive cathodes. Current injection from large emissive cathodes over a background plasma column (with a plasma density of a few $10^{18}\ \textrm {m}^{-3}$) is characterized. Radial scans of the ion velocity show that a continuous control of the rotation profile may be obtained using two spatial configurations for the locations of the emissive cathodes (either in the centre or at the edge of the plasma column). The rotation profile results from the electric drift velocity, damped by the drag exerted on the ions. We demonstrate that the evolution of the rotation profile with the injected current is then controlled by the modification of the plasma potential profile in the presence of strongly emissive cathodes.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bernhard, W. 1995 Handbook on Ion Sources. CRC Press.Google Scholar
Bieber, T., Bardin, S., De Poucques, L., Brochard, F., Hugon, R., Vasseur, J.L. & Bougdira, J. 2011 Measurements on argon ion by tunable diode-laser induced fluorescence in a low magnetic field helicon configuration reactor. Plasma Sour. Sci. Technol. 20 (1), 015023.CrossRefGoogle Scholar
Biglari, H., Diamond, P.H. & Terry, P.W. 1990 Influence of sheared poloidal rotation on edge turbulence. Phys. Fluids B 2 (1), 14.CrossRefGoogle Scholar
Brochard, F., Gravier, E. & Bonhomme, G. 2005 Transition from flute modes to drift waves in a magnetized plasma column. Phys. Plasmas 12, 062104.CrossRefGoogle Scholar
Burrell, K.H. 1997 Effects of $E\times B$ velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices. Phys. Plasmas 4 (5), 14991518.CrossRefGoogle Scholar
Chabert, P. & Braithwaite, N. 2011 Physics of Radio-Frequency Plasmas. Cambridge University Press.CrossRefGoogle Scholar
Chen, F.F. 2003 Lecture Notes on Langmuir probe diagnostics. Tech. Rep. Electrical Engineering Department University of California.Google Scholar
Chen, F.F. 2016 Introduction to Plasma Physics and Controlled Fusion. Springer International Publishing.CrossRefGoogle Scholar
Chen, F.F., Evans, J.D. & Arnush, D. 2002 A floating potential method for measuring Ion density. Phys. Plasmas 9 (4), 1449.CrossRefGoogle Scholar
Chung, K.S. 2012 Mach probes. Plasma Sour. Sci. Technol. 21 (6), 063001.CrossRefGoogle Scholar
Collins, C., Katz, N., Wallace, J., Jara-Almonte, J., Reese, I., Zweibel, E. & Forest, C.B. 2012 Stirring unmagnetized plasma. Phys. Rev. Lett. 108 (11), 115001.CrossRefGoogle ScholarPubMed
Curreli, D. & Chen, F.F. 2014 Cross-field diffusion in low-temperature plasma discharges of finite length. Plasma Sour. Sci. Technol. 23 (6), 064001.CrossRefGoogle Scholar
Desai, P.D., Chu, T.K., James, H.M. & Ho, C.Y. 1984 Electrical resistivity of selected elements. J. Phys. Chem. Ref. Data 13 (4), 1069.CrossRefGoogle Scholar
Désangles, V. 2018 Forçage à grande échelle d'une colonne de plasma faiblement magnétisée: influence d'une cathode émissive de grande taille. PhD thesis, ENS de Lyon, Univ Claude Bernard Lyon 1.Google Scholar
Desjardins, T.R. & Gilmore, M. 2016 Dynamics of flows, fluctuations, and global instability under electrode biasing in a linear plasma device. Phys. Plasmas 23 (5), 055710.CrossRefGoogle Scholar
Flanagan, K., Milhone, J., Egedal, J., Endrizzi, D., Olson, J., Peterson, E.E., Sassella, R. & Forest, C.B. 2020 Weakly magnetized, hall dominated plasma Couette flow. Phys. Rev. Lett. 125 (13), 135001.CrossRefGoogle ScholarPubMed
Forest, C.B., Flanagan, K., Brookhart, M., Clark, M., Cooper, C.M., Désangles, V., Egedal, J., Endrizzi, D., Khalzov, I.V., Li, H., et al. 2015 The wisconsin plasma astrophysics laboratory. J. Plasma Phys. 81 (5), 345810501.CrossRefGoogle Scholar
Gale, W.F. & Totemeier, T.C. 2004 Electron emission. In Smithells Metals Reference Book, 8th edn. (ed. W. F. Gale & T. C. Totemeier), pp. 18.1–18.10. Butterworth-Heinemann.Google Scholar
Gueroult, R., Evans, E.S., Zweben, S.J., Fisch, N.J. & Levinton, F. 2016 Initial experimental test of a helicon plasma based mass filter. Plasma Sour. Sci. Technol. 25 (3), 35024.CrossRefGoogle Scholar
Gueroult, R., Rax, J.-M. & Fisch, N.J. 2019 A necessary condition for perpendicular electric field control in magnetized plasmas. Phys. Plasmas 26 (12), 122106.CrossRefGoogle Scholar
Hagelaar, G. 2008 Modelling methods for low temperature plasmas. Habilitation à diriger des recherches, Université Toulouse III Paul Sabatier.Google Scholar
Hooper, E.B.J., Cohen, R.H., Correll, D.L., Gilmore, J.M. & Grubb, D.P. 1985 Nonambipolar radial particle transport in a tandem mirror. Phys. Fluids 28, 3609.CrossRefGoogle Scholar
Intrator, T., Cho, M.H., Wang, E.Y., Hershkowitz, N., Diebold, D. & DeKock, J. 1988 The virtual cathode as a transient double sheath. J. Appl. Phys. 64 (6), 29272933.CrossRefGoogle Scholar
Jin, S., Poulos, M.J., Van Compernolle, B. & Morales, G.J. 2019 Plasma flows generated by an annular thermionic cathode in a large magnetized plasma. Phys. Plasmas 26 (2), 022105.CrossRefGoogle Scholar
Kaganovich, I.D., Smolyakov, A., Raitses, Y., Ahedo, E., Mikellides, I.G., Jorns, B., Taccogna, F., Gueroult, R., Tsikata, S., Bourdon, A., et al. 2020 Physics of $E\times B$ discharges relevant to plasma propulsion and similar technologies. Phys. Plasmas 27 (12), 120601.CrossRefGoogle Scholar
Kemp, R.F. & Sellen, J.M. 1966 Plasma potential measurements by electron emissive probes. Rev. Sci. Instrum. 37 (4), 455.CrossRefGoogle Scholar
Lesur, G.R.J. 2021 Magnetohydrodynamics of protoplanetary discs. J. Plasma Phys. 87 (1), 205870101.CrossRefGoogle Scholar
Lieberman, M.A. & Lichtenberg, A.J. 2005 Principles of Plasma Discharges and Materials Processing, 2nd edn. Wiley.CrossRefGoogle Scholar
Liziakin, G., Gavrikov, A. & Smirnov, V. 2020 Negative electric potential in a cylindrical plasma column with magnetized electrons. Plasma Sour. Sci. Technol. 29 (1), 015008.CrossRefGoogle Scholar
Moon, C., Kaneko, T., Tamura, S. & Hatakeyama, R. 2010 Control of electron temperature and space potential gradients by superposition of thermionic electrons on electron cyclotron resonance plasmas. Rev. Sci. Instrum. 81 (5), 053506.CrossRefGoogle ScholarPubMed
Phelps, A.V. 1991 Cross sections and swarm coefficients for nitrogen ions and neutrals in N 2 and argon ions and neutrals in Ar for energies from 0.1 eV to 10 keV. J. Phys. Chem. Ref. Data 20 (3), 557.CrossRefGoogle Scholar
Phelps, A.V. 1994 The application of scattering cross sections to ion flux models in discharge sheaths. J. Appl. Phys. 76, 747.CrossRefGoogle Scholar
Plihon, N., Bousselin, G., Palermo, F., Morales, J., Bos, W.J., Godeferd, F., Bourgoin, M., Pinton, J.F., Moulin, M. & Aanesland, A. 2015 Flow dynamics and magnetic induction in the von-Kármán plasma experiment. J. Plasma Phys. 81 (1), 345810102.CrossRefGoogle Scholar
Poulos, M.J. 2019 Model for the operation of an emissive cathode in a large magnetized-plasma. Phys. Plasmas 26 (2), 022104.CrossRefGoogle Scholar
Richardson, O.W. 1924 Electron emission from metals as a function of temperature. Phys. Rev. 23 (2), 153155.CrossRefGoogle Scholar
Rincon, F. 2019 Dynamo theories. J. Plasma Phys. 85 (4), 205850401.CrossRefGoogle Scholar
Schaffner, D.A., Carter, T.A., Rossi, G.D., Guice, D.S., Maggs, J.E., Vincena, S. & Friedman, B. 2013 Turbulence and transport suppression scaling with flow shear on the large plasma device. Phys. Plasmas 20 (5), 055907.CrossRefGoogle Scholar
Severn, G.D., Hershkowitz, N., Breun, R.A. & Ferron, J.R. 1991 Experimental studies of the rotational stability of a tandem mirror with quadrupole end cells. Phys. Fluids B 3, 114.CrossRefGoogle Scholar
Sheehan, J.P. & Hershkowitz, N. 2011 Emissive probes. Plasma Sour. Sci. Technol. 20 (6), 063001.CrossRefGoogle Scholar
Shikama, T., Kado, S., Okamoto, A., Kajita, S. & Tanaka, S. 2005 Practical formula for Mach number probe diagnostics in weakly magnetized plasmas. Phys. Plasmas 12 (4), 044504.CrossRefGoogle Scholar
Sudit, I.D. & Chen, F.F. 1994 Rf compensated probes for high-density discharges. Plasma Sour. Sci. Technol. 3 (2), 162168.CrossRefGoogle Scholar
Taylor, R.J., Brown, M.L., Fried, B.D., Grote, H., Liberati, J.R., Morales, G.J., Pribyl, P., Darrow, D. & Ono, M. 1989 H-mode behavior induced by cross-field currents in a tokamak. Phys. Rev. Lett. 63, 23652368.CrossRefGoogle Scholar
Terasaka, K., Tanaka, M.Y., Yoshimura, S., Aramaki, M., Sakamoto, Y., Kawazu, F., Furuta, K., Takatsuka, N., Masuda, M. & Nakano, R. 2015 Flow structure formation in an ion-unmagnetized plasma: the HYPER-II experiments. J. Plasma Phys. 81 (1), 345810101.CrossRefGoogle Scholar
Tsushima, A., Mieno, T., Oertl, M., Hatakeyama, R. & Sato, N. 1986 Control of radial potential profile and nonambipolar ion transport in an electron cyclotron resonance mirror plasma. Phys. Rev. Lett. 56 (17), 18151818.CrossRefGoogle Scholar
Weisberg, D.B. 2016 Pursuing the Plasma Dynamo and MRI in the Laboratory : Hydrodynamic Studies of Unmagnetized Plasmas at Large Magnetic Reynolds Number. PhD thesis, University of Wisconsin-Madison.Google Scholar
Zweben, S.J., Gueroult, R. & Fisch, N.J. 2018 Plasma mass separation. Phys. Plasmas 25 (9), 090901.CrossRefGoogle Scholar