Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T05:27:51.022Z Has data issue: false hasContentIssue false

Preliminary experimental scaling of the helical mirror confinement effectiveness

Published online by Cambridge University Press:  21 October 2020

Anton V. Sudnikov*
Affiliation:
Budker Institute of Nuclear Physics, Lavrentyev av., 11, Novosibirsk 630009, Russia
Aleksey D. Beklemishev
Affiliation:
Budker Institute of Nuclear Physics, Lavrentyev av., 11, Novosibirsk 630009, Russia
Anna A. Inzhevatkina
Affiliation:
Budker Institute of Nuclear Physics, Lavrentyev av., 11, Novosibirsk 630009, Russia
Ivan A. Ivanov
Affiliation:
Budker Institute of Nuclear Physics, Lavrentyev av., 11, Novosibirsk 630009, Russia
Vladimir V. Postupaev
Affiliation:
Budker Institute of Nuclear Physics, Lavrentyev av., 11, Novosibirsk 630009, Russia
Aleksandr V. Burdakov
Affiliation:
Budker Institute of Nuclear Physics, Lavrentyev av., 11, Novosibirsk 630009, Russia
Vladimir V. Glinskiy
Affiliation:
Novosibirsk State University, Pirogov st., 2, Novosibirsk 630009, Russia
Konstantin N. Kuklin
Affiliation:
Budker Institute of Nuclear Physics, Lavrentyev av., 11, Novosibirsk 630009, Russia
Andrey F. Rovenskikh
Affiliation:
Budker Institute of Nuclear Physics, Lavrentyev av., 11, Novosibirsk 630009, Russia
Viktor O. Ustyuzhanin
Affiliation:
Novosibirsk State University, Pirogov st., 2, Novosibirsk 630009, Russia
*
Email address for correspondence: [email protected]

Abstract

The paper presents experimental results from the SMOLA device that is the first facility with a helical mirror section of the magnetic field. This device is built in the Budker Institute of Nuclear Physics for the verification of the helical mirror confinement idea that is the recently introduced technique of the active control of axial losses from a confinement zone. Theory predicts that with rotating plasma, a helical mirror will provide suppression of the axial plasma flow and, simultaneously, density pinching to the axis. Experiments demonstrated that plasma density at the exit from the transport section is suppressed with activation of the helical field, the effect is significant and highly reproducible. The most pronounced effect is observed on the plasma periphery, where the mirror ratio is the highest. The integral suppression ratio reaches 2–2.5 in the discussed experiments. Experimental results are compared with simplified theoretical estimates. The integral suppression ratio matches the simple theoretical estimates even if the transversal diffusion is neglected.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anikeev, A. V., Bagryansky, P. A., Beklemishev, A. D., Ivanov, A. A., Kolesnikov, E. Yu., Korzhavina, M. S., Korobeinikova, O. A., Lizunov, A. A., Maximov, V. V., Murakhtin, S. V., et al. 2015 Progress in mirror-based fusion neutron source development. Materials 8, 84528459.CrossRefGoogle ScholarPubMed
Bagryansky, P. A., Anikeev, A. V., Denisov, G. G., Gospodchikov, E. D., Ivanov, A. A., Lizunov, A. A., Kovalenko, Yu. V., Malygin, V. I., Maximov, V. V., Korobeinikova, O. A., et al. 2015 Overview of ECR plasma heating experiment in the GDT magnetic mirror. Nucl. Fusion 55, 053009.CrossRefGoogle Scholar
Bagryansky, P. A., Beklemishev, A. D. & Postupaev, V. V. 2019 Encouraging results and new ideas for fusion in linear traps. J. Fusion Energ. 38, 162181.CrossRefGoogle Scholar
Be'ery, I., Gertsman, A. & Seeman, O. 2018 Plasma confinement by moving multiple mirrors. Plasma Phys. Control. Fusion 60, 115004.CrossRefGoogle Scholar
Beklemishev, A. D. 2013 Helicoidal system for axial plasma pumping in linear traps. Fusion Sci. Technol. 63 (1T), 355357.CrossRefGoogle Scholar
Beklemishev, A. D. 2015 Helical plasma thruster. Phys. Plasmas 22, 103506.CrossRefGoogle Scholar
Beklemishev, A. D. 2016 a Diamagnetic ‘bubble’ equilibria in linear traps. Phys. Plasmas 23, 082506.CrossRefGoogle Scholar
Beklemishev, A. D. 2016 b Radial and axial transport in trap sections with helical corrugation. AIP Conf. Proc. 1771, 040006.CrossRefGoogle Scholar
Beklemishev, A. D. 2017 Plasma flows in the solenoid with the helical corrugation (in Russian). In XLIV International Zvenigorod Conference on Plasma Physics and Controlled Fusion, p. 75. PlasmaIOFAN Science and Technology Center.Google Scholar
Beklemishev, A., Anikeev, A., Astrelin, V., Bagryansky, P., Burdakov, A., Davydenko, V., Gavrilenko, D., Ivanov, A., Ivanov, I., Ivantsivsky, M., et al. 2013 Novosibirsk project of gas-dynamic multiple-mirror trap. Fusion Sci. Technol. 63 (1T), 4651.Google Scholar
Beklemishev, A. D., Bagryansky, P. A., Chaschin, M. S. & Soldatkina, E. I. 2010 Vortex confinement of plasmas in symmetric mirror traps. Fusion Sci. Technol. 57 (4), 351360.CrossRefGoogle Scholar
Budker, G. I., Mirnov, V. V. & Ryutov, D. D. 1982 Gas dynamics of a dense plasma in a corrugated magnetic field. In Collection of papers, Presented at International Conference on Plasma Theory, Kiev, 1971, p. 117. Nauka Publishing House.Google Scholar
Burdakov, A. V. & Postupaev, V. V. 2018 Multiple-mirror trap: a path from budker magnetic mirrors to linear fusion reactor. Phys.-Usp. 61 (6), 582600.CrossRefGoogle Scholar
Burdakov, A., Azhannikov, A., Astrelin, V., Beklemishev, A., Burmasov, V., Derevyankin, G., Ivanenko, V., Ivanov, I., Ivantsivsky, M., Kandaurov, I., et al. 2007 Plasma heating and confinement in GOL-3 multimirror trap. Fusion Sci. Technol. 51 (2T), 106111.CrossRefGoogle Scholar
Davydenko, V. I., Ivanov, A. A. & Shul'zhenko, G. I. 2015 High-current lanthanum-hexaboride electron emitter for a quasi-stationary arc plasma generator. Plasma Phys. Rep. 41 (11), 930933.CrossRefGoogle Scholar
Inzhevatkina, A. A., Burdakov, A. V., Ivanov, I. A., Postupaev, V. V. & Sudnikov, A. V. 2019 Doppler spectroscopy system for the plasma velocity measurements in SMOLA helical mirror. Plasma Fusion Res. 14, 2402020.CrossRefGoogle Scholar
Ivanov, A. A. & Prikhodko, V. V. 2017 Gas dynamic trap: experimental results and future prospects. Phys.-Usp. 60 (5), 509533.CrossRefGoogle Scholar
Postupaev, V. V., Batkin, V. I., Beklemishev, A. D., Burdakov, A. V., Burmasov, V. S., Chernoshtanov, I. S., Gorbovsky, A. I., Ivanov, I. A., Kuklin, K. N., Mekler, K. I., et al. 2016 a The GOL-NB program: further steps in multiple-mirror confinement research. Nucl. Fusion 57 (3), 036012.CrossRefGoogle Scholar
Postupaev, V. V., Batkin, V. I., Burdakov, A. V., Burmasov, V. S., Ivanov, I. A., Kuklin, K. N., Mekler, K. I., Rovenskikh, A. F. & Sidorov, E. N. 2020 Results of the first plasma campaign in a start configuration of gol-nb multiple-mirror trap. Plasma Phys. Control. Fusion 62, 025008.CrossRefGoogle Scholar
Postupaev, V. V., Sudnikov, A. V., Beklemishev, A. D. & Ivanov, I. A. 2016 b Helical mirrors for active plasma flow suppression in linear magnetic traps. Fusion Engng Des. 106, 2933.CrossRefGoogle Scholar
Simonen, T. C., Anikeev, A., Bagryansky, P., Beklemishev, A., Ivanov, A., Lizunov, A., Maximov, V., Prikhodko, V. & Tsidulko, Yu. 2010 High beta experiments in the gdt axisymmetric magnetic mirror. J. Fusion Energy 29, 558560.CrossRefGoogle Scholar
Sudnikov, A. V., Beklemishev, A. D., Postupaev, V. V., Burdakov, A. V., Ivanov, I. A., Vasilyeva, N. G., Kuklin, K. N. & Sidorov, E. N. 2017 SMOLA device for helical mirror concept exploration. Fusion Engng Des. 122, 8693.CrossRefGoogle Scholar
Sudnikov, A. V., Beklemishev, A. D., Postupaev, V. V., Ivanov, I. A., Inzhevatkina, A. A., Sklyarov, V. F., Burdakov, A. V., Kuklin, K. N., Rovenskikh, A. F. & Melnikov, N. A. 2019 First experimental campaign on SMOLA helical mirror. Plasma Fusion Res. 14, 2402023.CrossRefGoogle Scholar
Timofeev, A. V. 2020 About an acceleration of the charged particles in crossed fields (in Russian). Plasma Phys. Rep. 46 (6), in press.CrossRefGoogle Scholar