Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T01:42:43.022Z Has data issue: false hasContentIssue false

Polarization force for different dusty plasma situations

Published online by Cambridge University Press:  12 November 2013

K. S. Ashrafi*
Affiliation:
Department of Physics, Begum Rokeya University, Rangpur-5400, Bangladesh
A. A. Mamun
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
P. K. Shukla
Affiliation:
RUB International Chair, International Centre for Advanced Studies in Physical Sciences, Faculty of Physics & Astronomy, Ruhr-Universität Bochum, D-44780 Bochum, Germany
*
Email address for correspondence: [email protected]

Abstract

Polarization force (acting on a dust grain) and its modification by polarity of dust, non-isothermal (viz. non-thermal and trapped) ions, adiabaticity of electrons and ions, etc. have been investigated theoretically. It has been found that the polarization force is significantly modified by these effects, i.e. the magnitude of the polarization force is significantly decreased by the presence of non-thermal ions and by the adiabaticity of electrons and ions. On the other hand, it is significantly increased by the presence of trapped ions. It has been also shown that the magnitude of the polarization force is increased (decreased) by electric potential in the case of positively (negatively) charged dust. The relevance of our investigation to some space and astrophysical plasma situations is discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ashrafi, K. S., Mamun, A. A. and Shukla, P. K. 2010 Phys. Rev. E 92, 15004.Google Scholar
Cairns, R. A., Mamun, A. A., Bingham, R., Dendy, R., Bostrum, R., Narin, C. M. C. and Shukla, P. K. 1995 Geo. Phys. Res. Lett. 22, 2709.Google Scholar
Hamaguchi, S. and Farouki, R. T. 1994a Phys. Rev. E 49, 4430.Google Scholar
Hamaguchi, S. and Farouki, R. T. 1994b Phys. Plasmas 1, 2110.Google Scholar
Khrapak, S. A., Ivlev, A. V., Yaroshenko, V. V. and Morfill, G. E. 1990 Phys. Rev. Lett. 102, 245004.CrossRefGoogle Scholar
Mamun, A. A. 1997 Phys. Rev. E 55, 1852.CrossRefGoogle Scholar
Mamun, A. A. 1998 Phys. Scr. 57, 258.Google Scholar
Mamun, A. A. 2008 Phys. Lett. A 372, 1490.Google Scholar
Mamun, A. A., Ashrafi, K. S. and Shukla, P. K. 2010 Phys. Rev. E 82, 026405.Google Scholar
Mamun, A. A., Cairns, R. A. and Shukla, P. K. 1996 Phys. Plasmas 3, 702.Google Scholar
Mamun, A. A., Eliasson, B. and Shukla, P. K. 2004 Phys. Lett. A 332, 412.Google Scholar
Mamun, A. A., Jahan, N. and Shukla, P. K. 2008 J. Plasma Phys. 75, 413.Google Scholar
Schamel, H. 1972a J. Plasma Phys. 14, 905.Google Scholar
Schamel, H. 1972b J. Plasma Phys. 9, 377.CrossRefGoogle Scholar
Schamel, H. 1975 J. Plasma Phys. 13, 139.Google Scholar
Schamel, H. and Bujarbarua, S. 1980 Phys. Fluids 23, 2498.Google Scholar
Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol, UK: IOP.Google Scholar