Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-02T23:31:28.506Z Has data issue: false hasContentIssue false

Peculiarities of surface plasmons in quantum plasmas

Published online by Cambridge University Press:  22 February 2013

YURIY O. TYSHETSKIY
Affiliation:
School of Physics, University of Sydney, Sydney, NSW 2006, Australia ([email protected])
S. V. VLADIMIROV
Affiliation:
School of Physics, University of Sydney, Sydney, NSW 2006, Australia ([email protected]) Metamaterials Laboratory, National Research University of Information Technology, Mechanics, and Optics, St Petersburg 199034, Russia
R. KOMPANEETS
Affiliation:
School of Physics, University of Sydney, Sydney, NSW 2006, Australia ([email protected])

Abstract

Surface plasmons (SP) in a semi-bounded quantum plasma with degenerate electrons (e.g. a metal) are considered, and some interesting consequences of electron Pauli blocking for the SP dispersion and temporal attenuation are discussed. In particular, it is demonstrated that a semi-bounded degenerate plasma with a sharp boundary supports two types of SP with distinct frequencies and qualitatively different temporal attenuation, in contrast to a non-degenerate hot plasma that only supports one type of SP.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandrov, A. F., Bogdankevich, L. S. and Rukhadze, A. A. 1984 Principles of Plasma Electrodynamics. Berlin: Springer.CrossRefGoogle Scholar
Bergman, D. J. and Stockman, M. I. 2003 Phys. Rev. Lett. 90, 027402.CrossRefGoogle Scholar
Brongersma, M. L. and Shalaev, V. M. 2010 Science 328, 440.CrossRefGoogle Scholar
Garcia-Vidal, F. J. and Moreno, E. 2009 Nature 461, 604.CrossRefGoogle Scholar
Gol'dman, I. I. 1947 Zh. Eksp. Teor. Fiz. 17, 681.Google Scholar
Guernsey, R. L. 1969 Phys. Fluids 12, 1852.CrossRefGoogle Scholar
Hudson, J. F. P. 1962 Math. Proc. Camb. Philos. Soc. 58, 119.CrossRefGoogle Scholar
Kretschmann, E. and Raether, H. 1968 Z. Naturf. A 23, 2135.CrossRefGoogle Scholar
Krivitskii, V. S. and Vladimirov, S. V. 1991 Zh. Eksp. Teor. Fiz. 100, 1483.Google Scholar
Landau, L. D. 1946 J. Phys. (USSR) 10, 25.Google Scholar
Lazar, M., Shukla, P. K. and Smolyakov, A. 2007 Phys. Plasmas 14, 124501.CrossRefGoogle Scholar
Lifshitz, E. M. and Pitaevskii, L. P. 1981 Physical Kinetics. Oxford: Pergamon Press.Google Scholar
Marklund, M., Brodin, G., Stenflo, L. and Liu, C. S. 2008 Europhys. Lett. 84, 17006.CrossRefGoogle Scholar
Noginov, M. A.et al. 2009 Nature 460, 1110.CrossRefGoogle Scholar
Otto, A. 1968 Z. Phys. 216, 398.CrossRefGoogle Scholar
Pitarke, J. M., Silkin, V. M., Chulkov, E. V. and Echenique, P. M. 2007 Rep. Prog. Phys. 70, 1.CrossRefGoogle Scholar
Powell, C. J. and Swan, J. B. 1959a Phys. Rev. 115, 869.CrossRefGoogle Scholar
Powell, C. J. and Swan, J. B. 1959b Phys. Rev. 116, 81.CrossRefGoogle Scholar
Ritchie, R. H. 1957 Phys. Rev. 106, 874.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2011 Rev. Mod. Phys. 83, 885.CrossRefGoogle Scholar
Tyshetskiy, Y., Vladimirov, S. V. and Kompaneets, R. 2012a Phys. Plasmas 19, 112107.CrossRefGoogle Scholar
Tyshetskiy, Y., Williamson, D. J., Kompaneets, R. and Vladimirov, S. V. 2012b Phys. Plasmas 19, 032102.CrossRefGoogle Scholar
Vladimirov, S. V. 1994 Phys. Scr. 49, 625.CrossRefGoogle Scholar
Vladimirov, S. V. and Tyshetskiy, Yu. O. 2011 Phys. Usp. 54, 1313.CrossRefGoogle Scholar
Vladimirov, S. V., Yu, M. Y. and Tsytovich, V. N. 1994 Phys. Rep. 241, 1.CrossRefGoogle Scholar
Zheludev, N. I., Prosvirnin, S. L., Parasimakis, N. and Fedotov, V. A. 2008 Nature Photon. 2, 351.CrossRefGoogle Scholar