Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T21:18:14.001Z Has data issue: false hasContentIssue false

Padé approximants and nonlinear waves

Published online by Cambridge University Press:  13 March 2009

F. J. Romerias
Affiliation:
Centro do Electrodinâmica, Instituto Superior Técnico, Lisboa-1, Portugal
J. P. Dougherty
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, U.K.

Abstract

The perturbation solution of the ordinary differential equations that describe exact nonlinear travelling plane waves leads to asymptotic expansions in powers of the (small) wave amplitude for both the proffle and the frequency of the waves. This paper shows how the Padé approximant method can be used to extend the validity of those expansions to larger amplitudes. The method is applied to the Duffing equation and to two types of nonlinear waves in a cold electron plasma: longitudinal oscillations and coupled transverse–longitudinal relativistic waves.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhiezer, A. I.& Polovin, R. V. 1956 Soviet Phys. JETPM, 3, 696.Google Scholar
Alloucherie, Y. J. 1967 J. Plasma Phys. 1, 55.Google Scholar
Baker, G. A. 1975 Essentials of Padé Approximants. Academic.Google Scholar
Baker, G. A.& Gammel, J. L. (eds.) 1970 The Padé Approximants in Theoretical Physics. Academic.Google Scholar
Bernstein, I. B., Greene, J. M.& Kruskal, M. D. 1957 Phys. Rev. 108, 546.Google Scholar
Byrd, P. F.& Friedman, M. D. 1971 Handbook of Elliptic Integrals for Engineers and Scientists. Springer.CrossRefGoogle Scholar
Chian, A. C. L.& Clemmow, P. C. 1975 J. Plasma Phys. 14, 505.Google Scholar
Clemmow, P. C. 1974 J. Plasma Phys. 12, 297.CrossRefGoogle Scholar
Clemmow, P. C. 1975 J. Plasma Phys. 13, 231.CrossRefGoogle Scholar
Clemmow, P. C. 1977 J. Plasma Phys. 17, 301.CrossRefGoogle Scholar
Coffey, T. P. 1971 Phys. Fluids, 14, 1402.Google Scholar
Coppi, B., Rosenbluth, M. N.& Sudan, R. N. 1969 Ann. Phys. (N.Y.), 55, 207.Google Scholar
Davidson, R. C. 1972 Methods in Nonlinear Plasma Theory. Academic.Google Scholar
Davis, H. T. 1962 Introduction to Nonlinear Differential and Integral Equations. Dover.Google Scholar
Freidberg, J. P. 1968 J. Plasma Phys. 2, 105.CrossRefGoogle Scholar
Graves-morris, P. R. (ed.) 1973 Padé Approximants and their Applications. Academic.Google Scholar
Kennel, C. F.& Pellat, R. 1976 J. Plasma Phys. 15, 335.CrossRefGoogle Scholar
Lutomirski, R. F.& Sudan, R. N. 1966 Phys. Rev. 147, 156.CrossRefGoogle Scholar
Max, C. E. 1973 Phys. Fluids, 16, 1277.Google Scholar
Nayfeh, A. H. 1973 Perturbation Methods. Wiley.Google Scholar
Romeiras, F. J. 1977 Ph.D. Thesis, University of Cambridge.Google Scholar
Sluijter, F. W.& Montgomery, D. 1965 Phys. Fluids, 8, 551.Google Scholar
Wang, H. S. C. 1963 Phys. Fluids, 6, 1115.CrossRefGoogle Scholar
Wang, H. S. C.& Lojko, M. S. 1963 Phys. Fluids, 6, 1458.Google Scholar
Whittaker, E. T.& Watson, G. N. 1973 A Course of Modern Analysis (4th ed.). Cambridge University Press.Google Scholar
Wilhelmsson, H. 1961 Phys. Fluids, 4, 335.CrossRefGoogle Scholar