Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T14:51:07.307Z Has data issue: false hasContentIssue false

Ordinary electromagnetic mode instability

Published online by Cambridge University Press:  13 March 2009

Chio-Zong Cheng
Affiliation:
Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242

Extract

The instability of the ordinary electromagnetic mode, propagating perpendicular to an external magnetic field, is studied for a single-species plasma with ring velocity distribution. The marginal instability boundaries for both the purely growing mode and the propagating growing modes are calculated from the instability criteria. The dispersion characteristics for various sets of plasma parameters are also given. The frequency bands of the propagating growing modes are centered at about (η +½)ωc, where η = 1, 2,…, and the typical growth rates are of the order of the cyclotron frequency and enhanced by increasing fluβ1.

Type
Articles
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baldwin, D. E., Bernstein, I. B. & Weenink, M. P. H. 1969 Advances in Plasma Physics (ed. Simon, A. and Thompson, W.), vol. 3, p. 1. Interscience.Google Scholar
Bornatici, M. & Lee, K. F. 1970 Phys. Fluids, 13, 3007.CrossRefGoogle Scholar
Briggs, R. J. 1964 Electron-Stream Interaction with Plasma. M.I.T. Press.CrossRefGoogle Scholar
Davidson, R. C. & Wu, C. S. 1970 Phys. Fluids, 13, 1407.CrossRefGoogle Scholar
Derfler, H. 1967 Phys. Lett. 24 A, 763.CrossRefGoogle Scholar
Gaffey, J. D., Thompson, W. B. & Liu, C. S. 1972 J. Plasma Phys. 7, 189.CrossRefGoogle Scholar
Gaffey, J. D., Thompson, W. B. & Liu, C. S. 1973 J. Plasma Phys. 9, 17.CrossRefGoogle Scholar
Gurnett, D. A. & Shaw, R. H. 1973 J. Geophys. Res. 78, 8136.CrossRefGoogle Scholar
Hamasaki, S. 1968a Phys. Fluids, 11, 1173.CrossRefGoogle Scholar
Hamasaki, S. 1968b Phys. Fluids, 11, 2724.CrossRefGoogle Scholar
Kennel, C. F. & Petschek, H. E. 1966 J. Geophys. Res. 71, 1.CrossRefGoogle Scholar
Lee, K. F. & Armstrong, J. C. 1971a Phys. Rev. Letters, 26, 77.CrossRefGoogle Scholar
Lee, K. F. & Armstrong, J. C. 1971b Phys. Rev. Letters, 26, 805.CrossRefGoogle Scholar
Tzoar, N. & Yang, T. P. 1970 Phys. Rev. A 2, 2000.CrossRefGoogle Scholar
Watson, G. N. 1958 A Treatise on the Theory of Bessel Functions (2nd edn.). Cambridge University Press.Google Scholar