Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T06:47:28.355Z Has data issue: false hasContentIssue false

On the drag force on non-spherical dust grain

Published online by Cambridge University Press:  10 March 2010

S. I. KRASHENINNIKOV
Affiliation:
University of California, San Diego, La Jolla, CA 92093, USA ([email protected])
D. A. MENDIS
Affiliation:
University of California, San Diego, La Jolla, CA 92093, USA ([email protected])

Abstract

It is shown that the direction of the drag force imposed on non-spherical grain by plasma flow is not necessarily aligned with the flow velocity. The implications of this fact for a grain dynamics are discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Merlino, R. L. and Goree, J. A. 1994 Phys. Today July, 32.Google Scholar
[2]Selwynd, G. E., Heidenrich, J. E. and Haller, K. L. 1990 Appl. Phys. Lett. 46, 1887.Google Scholar
[3]Mendis, A. and Rosenberg, M. 1994 Ann. Rev. Astron. Astrophys. 32, 419.CrossRefGoogle Scholar
[4]Tsytovich, V. N. 1997 Phys. Usp. 40, 53.CrossRefGoogle Scholar
[5]Grün, E., Gustafson, B. A. S., Dermott, S. and Fechtig, H. (eds) 2001 Interplanetary Dust. Berlin, Germany: Springer.CrossRefGoogle Scholar
[6]Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol, UK: Institute of Physics.CrossRefGoogle Scholar
[7]Winter, J. 2004 Plasma Phys. Control. Fusion 46, B583.CrossRefGoogle Scholar
[8]Fortov, V. E. et al. 2005 Physics Reports 421, 1.CrossRefGoogle Scholar
[9]Krasheninnikov, S. I. et al. 2008 Plasma Phys. Control. Fusion 50, 124054.CrossRefGoogle Scholar
[10]Shukla, P. K. and Eliasson, B. 2009 Rev. Mod. Phys. 81, 25.CrossRefGoogle Scholar
[11]Morfill, G. E. and Ivlev, A. V. 2009 Rev. Mod. Phys. 81, 1353.CrossRefGoogle Scholar
[12]Jeans, J. H. 1927 The Mathematical Theory of Electricity and Magnetizm, Cambridge, UK: Cambridge Univ. Press, p. 246.Google Scholar
[13]Hill, J. R. and Mendis, D. A. 1981 Can. J. Phys. 59, 897.CrossRefGoogle Scholar
[14]Keiter, R. and Kushner, M. J. 1998 J. Appl. Phys. 83, 5670.CrossRefGoogle Scholar
[15]Tsytovich, V. N., Sato, N. and Morfill, G. E. 2003 New J. Phys. 5, 1.Google Scholar
[16]Auer, S., Kempf, S. and Grun, E. 2007 Computed Electric Charges of Grains with Highly Irregular Shapes, Vol. 643. Workshop on dust in planetary systems. Noordwijk, The Netherlands: ESA Publications Division c/o ESTEC, p. 177.Google Scholar
[17]Landau, L. D. and Lifshits, E. M. 2003 Course of Theoretical Physics, Vol. 1 Mechanics. Amsterdam, The Netherlands: Elsevier.Google Scholar
[18]Trubnikov, B. A. 1965 Particle Collisions in Fully Ionized Plasmas In: Review of Plasma Physics, Vol. 1 (ed. Leontovich, M. A.). New York: Consultants Bureau.Google Scholar
[19]Eckstain, W. 1991 Suppl. Nucl. Fusion 1, 17; Tahada, T. et al. 1985 Nucl. Instum. Meth. B 9, 113.Google Scholar
[20]Sato, N. 2005 Spinning Motion of fine Particles in Plasmas In: AIP Conference Proceeding 799, New York: AIP, p. 97; Hutchinson, I. 2004 New J. Phys. 6, 43; Krasheninnikov, S. I. 2006 Phys. Plasmas 13, 114502; Krasheninnikov, S. I., Shevchenko, V. I. and Shukla, P. K. 2007 Phys. Lett. A 361, 133.CrossRefGoogle Scholar