Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-27T19:27:09.973Z Has data issue: false hasContentIssue false

Numerical analysis of double layers in the downward current region of the aurora

Published online by Cambridge University Press:  08 October 2010

SANQIU LIU
Affiliation:
Department of Physics, Nanchang University, Nanchang 330047, P.R. China ([email protected])
JINGJING LIAO
Affiliation:
Department of Information and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China

Abstract

On the basis of two magneto-fluid model for two time-scales, the evolution of double layer in the downward current region of the aurora is numerically simulated under the non-static limit case. The results show that localized drop in density owing to collapsed high-frequency field can lead to the formation of double layer. The amplitude of the double layer is the order of the electron temperature, and the ramp potential is up to 36 V localized to tens of Debye lengths, which is around 100–200 m. These are consistent with the measurements in both the ramp potential and thickness by the Fast Auroral SnapshoT satellite in the downward current region of the aurora.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Alfvén, H. and Carlqvist, P. 1967 Currents in the solar atmosphere and a theory of solar flares. Solar Phys. 1, 220.CrossRefGoogle Scholar
[2]Evans, D. S. 1974 Precipitating electron fluxes formed by a magnetic field-aligned potential difference. J. Geophys. Res. 79, 2853.CrossRefGoogle Scholar
[3]Wescott, E. M., Stenbaek-Nielsen, M. C., Hallinan, T. J. and Davis, T. N. 1976 The skylab barium injection experiments: evidence for a double layer. J. Geophys. Res. 81, 4495.CrossRefGoogle Scholar
[4]Shawhan, S. D., Falthammar, C. G. and Block, L. P. 1978 On the nature of large auroral zone electric fields at 1 RE altitude. J. Geophys. Res. 83, 1049.CrossRefGoogle Scholar
[5]Leung, P. A., Wong, Y. and Quon, B. H. 1980 Phys. Fluids 23, 992.CrossRefGoogle Scholar
[6]Quon, B. H. and Wong, A. Y. 1976 Formation of potential double layers in plasmas. Phys. Rev. Lett. 37, 1393.CrossRefGoogle Scholar
[7]Coakley, P. and Hershkowitz, N. 1979 Laboratory double layers. Phys. Fluids 22, 1171.CrossRefGoogle Scholar
[8]Knorr, G. and Goertz, C. K. 1974 Existence and stability of strong potential double layers. Astrophys. Space Sci. 31, 209.CrossRefGoogle Scholar
[9]Hudson, M. K., Lottko, W., Roth, I. and Witt, E. 1983 Solitary waves and double layers on auroral field lines. J. Geophys. Res. 88, 916.CrossRefGoogle Scholar
[10]Izuka, S., Saeki, K., Sato, N. and Hatta, Y. 1979 Buneman instability, pierce instability, and double-layer formation in a collisionless plasma. Phys. Rev. Lett. 43, 1404.CrossRefGoogle Scholar
[11]Torven, S. 1981 Modified Korteweg-de Vries equation for propagating double layers in plasma. Phys. Rev. Lett. 47, 1053.CrossRefGoogle Scholar
[12]Block, L. P. 1972 Potential double layers in the ionosphere (ionospheric double layer theory extended to conditions, including gravity and expansion effects in diverging geomagnetic flux tubes). Cosm. Electrodyn. 3, 349.Google Scholar
[13]Block, L. P. 1978 A double layer review. Astrophys. Space Sci. 55, 59.CrossRefGoogle Scholar
[14]Ergun, R. E., Su, Y. -J., Andersson, L., Carlson, C. W., McFadden, J. P., Mozer, F. S., Newman, D. L., Goldman, M. V. and Strangeway, R. J. 2001 Direct observation of localized parallel electric fields in a space plasma. Phys. Rev. Lett. 87, 045003.CrossRefGoogle Scholar
[15]Ergun, R. E., Andersson, L., Carlson, C. W., Newman, D. L. and Goldman, M. V. 2003 Double layers in the downward current region of the aurora. Nonlinear Process. Geophys. 10, 4552.CrossRefGoogle Scholar
[16]Li, X. Q. 1985 Double layers in strong turbulent plasmas. Astrophys. Space Sci. 112, 13.Google Scholar
[17]Newman, D. L., Goldman, M. V., Ergun, R. E. and Mangeney, A. 2001 Formation of double layers and electron holes in a current-driven space plasma. Phys. Rev. Lett. 87, 255001.CrossRefGoogle Scholar
[18]Raadu, M. A. and Carlqvist, P. 1981 Electrostatic double layers and a plasma evacuation process. Astrophys. Space Sci. 74, 189.CrossRefGoogle Scholar
[19]Carlqvist, P. 1980 Studies of electrostatic double layers with applications to cosmic plasmas. In: Electron and Plasma Physics. Stockholm, Sweden: Royal Institute of Technology, TRITA-EPP-80.Google Scholar
[20]Thornhill, S. G. and ter Haar, D. 1978 Langmuir turbulence and modulational instability. Phys. Rep. 43C (2), 43.CrossRefGoogle Scholar
[21]Nicholson, D. R. and Goldman, M. V. 1978 Cascade and collapse of Langmuir waves in two dimensions. Phys. Fluids 21, 1766.CrossRefGoogle Scholar
[22]Zakharov, V. E. 1983 Nonlinear phenomena and plasma turbulence. In: Handbook of Plasma Physics, Vol. 2 (ed. Galeev, A. A. and Sudan, R. N.). Amsterdan, Netherlands: North-Holland, pp. 81122.Google Scholar
[23]Liu, X. L. and Liu, S. Q. 2006 Numerical analysis of strong Langmuir turbulence excited by transverse plasmons in a laser plasma. J. Plasma Phys. 73, 3.Google Scholar
[24]Robinson, P. A. 1997 Nonlinear wave collapse and strong turbulence. Rev. Mod. Phys. 69, 507.CrossRefGoogle Scholar
[25]Rubenchik, A. M. and Zakharov, V. E. 1991 Handbook of Plasma Physics, Vol. 3 (eds. Rosenbluth, M. N., Sagdeev, R. Z., Rubenchik, A. M. and Witkowski, S.). Amsterdam, Netherlands: North-Holland, p. 335.Google Scholar
[26]Li, X. Q. 2004 Collapsing Dynamics of Plasmons (in Chinese). Beijing, China: Chinese Science and Technology Press, pp. 126148.Google Scholar
[27]Tsytovich, V. N. 1977 Theory of Turbulent Plasma. New York, NY: Consultants Bureau, p. 44.CrossRefGoogle Scholar