Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T21:31:17.578Z Has data issue: false hasContentIssue false

Nonlinear dynamics of low-frequency drift waves

Published online by Cambridge University Press:  13 March 2009

M. Beckmann
Affiliation:
Institute für Experimentalphysik II, Ruhr-Universität Bochum, D-44780 Bochum, Germany
P. Frank
Affiliation:
Institute für Experimentalphysik II, Ruhr-Universität Bochum, D-44780 Bochum, Germany
G. Himmel
Affiliation:
Institute für Experimentalphysik II, Ruhr-Universität Bochum, D-44780 Bochum, Germany

Abstract

The nonlinear behaviour of unstable drift waves in magnetized plasmas is analysed analytically. Most attention is paid to low-frequency waves created in electron density and temperature gradients of opposite sign. This situation is typically encountered in radiofrequency-produced discharges. The model developed explains nonlinear features such as mode competition, amplitude saturation and magnetic field hysteresis, which are observed experimentally.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bogoliubov, N. & Mitropolskii, Y. A. 1961 Asymptotic Methods in the Theory of Nonlinear Oscillations, p. 39. Gordon and Breach, New York.Google Scholar
Dupree, T. H. 1968 0Nonlinear theory of low-frequency instabilities. Phys. Fluids 11, 2680.CrossRefGoogle Scholar
Frank, P., Himmel, G. & Schlüter, H. 1992 Observation of low-frequency density oscillations in an r.f. heated magnetoplasma. Plasma Phys. Contr. Fusion 34, 1201.Google Scholar
Frank, P., Beckmann, M. & Himmel, G. 1996 Analytical description of low-frequency electron density and temperature oscillations. J. Plasma Phys. 55, 25.CrossRefGoogle Scholar
Kakutani, T. & Sugimoto, N. 1974 Krylov-Bogoliubov-Mitropolsky method for nonlinear wave modulation. Phys. Fluids 17, 1617.Google Scholar
Kauschke, U. & Schlüter, H. 1991 On nonlinear periodic drift waves. Plasma Phys. Contr. Fusion 33, 1309.CrossRefGoogle Scholar
Marden, Marshall E., Ellis, R. F. & Walsh, J. E. 1986 Collisional drift instability in a variable radial electric field. Plasma Phys. Contr. Fusion 28, 1461.Google Scholar
Montgomery, D. & Tidman, D. A. 1964 Secular and nonsecular behavior for the cold plasma equation. Phys. Fluids 7, 242.Google Scholar
Monticello, D. A. & Simon, A. 1974 Nonlinear theory of the collisional drift-wave instability. Phys. Fluids 17, 791.Google Scholar
Nordman, H., Pavlenko, V. P. & Weiland, J. 1993 Subcritical reactive drift wave turbulence. Phys. Fluids B5, 402.CrossRefGoogle Scholar
Shukla, P. K. & Sharma, A. S. 1978 Self-modulation of a wave-packet in a nonlinear dispersive medium. Phys. Lett. 65A, 279.Google Scholar
Tidman, D. A. & Stainer, H. M. 1965 Frequency and wavenumber shifts for nonlinear waves in a ‘hot’ plasma. Phys. Fluids 8, 345.CrossRefGoogle Scholar