Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-23T18:24:14.552Z Has data issue: false hasContentIssue false

Multi-dimensional instability of dust-ion-acoustic solitary waves in a multi-ion dusty plasma

Published online by Cambridge University Press:  01 August 2009

M. G. M. ANOWAR
Affiliation:
Department of Physics, National University, Gazipur-1704, Bangladesh ([email protected])
A. A. MAMUN
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh

Abstract

The basic features of obliquely propagating dust-ion-acoustic (DIA) solitary waves, and their multi-dimensional instability in a magnetized multi-ion dusty plasma containing hot adiabatic inertia-less electrons, cold positive and negative ions, and negatively charged static dust have been theoretically investigated by the reductive perturbation method, and the small-k perturbation expansion technique. The combined effects of electron adiabaticity, external magnetic field (obliqueness), and negative ions, which are found to significantly modify the basic properties (speed, amplitude, width, and instability) of small but finite-amplitude DIA solitary waves, are explicitly examined. It is also found that the instability criterion and the growth rate are significantly modified by the external magnetic field, the propagation directions of both the nonlinear waves and their perturbation modes, and the presence of negative ions. The implications of our results in space and laboratory dusty plasmas are briefly discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barkan, A., D'Angelo, N. and Merlino, R. L. 1996 Planet. Space Sci. 44, 239.CrossRefGoogle Scholar
Bharuthram, R. and Shukla, P. K. 1992 Planet. Space Sci. 40, 973.Google Scholar
Birk, G. T., Copp, A. and Shukla, P. K. 1996 Phys. Plasmas 3, 3564.Google Scholar
Copp, A., Birk, G. T. and Shukla, P. K. 1997 Phys. Plasmas 4, 4414.Google Scholar
Ciolek, G. E. and Mouschovias, T. Ch. 1993 Astrophys. J. 418, 774.Google Scholar
Das, P. K. and Verheest, F. 1989 J. Plasma Phys. 41, 171.Google Scholar
El-Labany, S. K. and El-Shamy, E. F. 2004 Astrophys. Space Sci. 293, 295.Google Scholar
Geortz, C. K. 1989 Rev. Geophys. 27, 271.Google Scholar
Horanyi, M. and Mendis, D. A. 1985 Astrophys. J. 294, 357.CrossRefGoogle Scholar
Horanyi, M. and Mendis, D. A. 1986 Astrophys. J. 307, 800.Google Scholar
Infeld, E. 1972 J. Plasma Phys. 8, 105.Google Scholar
Infeld, E. 1985 J. Plasma Phys. 33, 171.CrossRefGoogle Scholar
Infeld, E. and Rowlands, G. 1973 J. Plasma Phys. 10, 293.Google Scholar
Kourakis, I., Shukla, P. K. and Morfill, G. E. 2005 New J. Phys. 7, 153.Google Scholar
Laedke, E. W. and Spatschek, K. H. 1982 J. Plasma Phys. 28, 469.Google Scholar
Lee, L. C. and Kan, J. R. 1981 Phys. Fluids 24, 430.CrossRefGoogle Scholar
Mamun, A. A. 2008 Phys. Lett. A 372, 1490.Google Scholar
Mamun, A. A. and Cairns, R. A. 1996 J. Plasma Phys. 56, 175.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2002a IEEE Trans. Plasma Sci. 30, 720.Google Scholar
Mamun, A. A. and Shukla, P. K. 2002b Phys. Plasmas 9, 1468.Google Scholar
Mamun, A. A. and Shukla, P. K. 2005 Plasma Phys. Control. Fusion 47, A1.Google Scholar
Mendis, D. A. and Horanyi, M. 1991 In: Cometary Plasma Processes (AGU Monograph, 61). Washington, D.C.: American Geophysical Union, p. 17.Google Scholar
Mendis, D. A. and Rosenberg, M. 1994 Annu. Rev. Astron. Astrophys. 32, 419.CrossRefGoogle Scholar
Merlino, R. L. and Goree, J. 2004 Phys. Today 57, 32.Google Scholar
Montmerle, T. 1991 In: The Physics of Star Formation and Early Stellar Evolution (ed. Lada, C. J. and Kylafis, N. D.). Dordrecht: Kluwer, p. 675.CrossRefGoogle Scholar
Nakamura, Y., Bailung, H. and Shukla, P. K. 1999 Phys. Rev. Lett. 83, 1602.Google Scholar
Nakamura, Y. and Sharma, A. 2001 Phys. Plasmas 8, 3921.CrossRefGoogle Scholar
Nakano, T., Nishi, R. and Umebayashi, T. 1996 In: The Role of Dust in the Formation of Stars (ed. Käufle, H. U. and Siebenmorgen, R.). Berlin: Springer, p. 675.Google Scholar
Northrop, T. G. 1992 Phys. Scripta 45, 475.Google Scholar
Pieper, J. B. and Goree, J. 1996 Phys. Rev. Lett. 77, 3137.CrossRefGoogle Scholar
Rahman, A., Sayed, F. and Mamun, A. A. 2007 Phys. Plasmas 14, 034503.Google Scholar
Rowlands, G. 1969 J. Plasma Phys. 3, 567.Google Scholar
Rosenberg, M. and Merlino, R. L. 2007 Planet. Space Sci. 55, 1464.CrossRefGoogle Scholar
Rosenberg, M. and Shukla, P. K. 2002 J. Geophys. Res. 107, SIA 21-1.Google Scholar
Sayed, F., Haider, M. M., Mamun, A. A., Shukla, P. K., Eliasson, B. and Adhikary, N. 2008 Phys. Plasmas 15, 063701.CrossRefGoogle Scholar
Shukla, P. K., Amin, M. R. and Morfill, G. E. 1999 Phys. Scripta 59, 389.CrossRefGoogle Scholar
Shukla, P. K., Birk, G. T. and Morfill, G. E. 1997 Phys. Scripta 56, 299.CrossRefGoogle Scholar
Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol: IOP Publishing Ltd.Google Scholar
Shukla, P. K. and Mamun, A. A. 2003 New J. Phys. 5, 17.1.Google Scholar
Shukla, P. K. and Rosenberg, M. 1999 Phys. Plasmas 6, 1038.Google Scholar
Shukla, P. K. and Silin, V. P. 1992 Phys. Scripta 45, 508.Google Scholar
Shukla, P. K. and Yu, M. Y. 1978 J. Math. Phys. 19, 2506.CrossRefGoogle Scholar
Verheest, F. 2000 Waves in Dusty Plasmas. Dordrecht: Kluwer Academic.Google Scholar
Vranjes, J., Pandey, B. P. and Poedts, S. 2005 Planet. Space Sci. 54, 695.CrossRefGoogle Scholar
Witt, E. and Lotko, W. 1983 Phys. Fluids 26, 2176.CrossRefGoogle Scholar