Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T05:26:02.537Z Has data issue: false hasContentIssue false

Modulated electromagnetic waves in relativistic plasmas: field and kinetic equations

Published online by Cambridge University Press:  13 March 2009

Maria L. Ekiel-Jeżewska
Affiliation:
Institute for Theoretical Physics and Institute of Fundamental Technological Research, Polish Academy of Sciences, Świe¸tokrzyska 21, 00-049 Warsaw, Poland, and Lawrence Berkeley Laboratory, University of California, U.S.A.
Tor Flå
Affiliation:
Mathematics/Statistics Division, 1MR, University of Tromsø, N-9000 Tromsø, Norway, and Lawrence Berkeley Laboratory, University of California, U.S.A.
Allan N. Kaufman
Affiliation:
Physics Department and Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720, U.S.A.

Abstract

Modulated electromagnetic plane waves in relativistic collisionless, unmagnetized plasmas are investigated through expansion in a small parameter, corresponding to weak dispersion and weak nonlinearity. The oscillation-centre transformation is applied to construct a Hamiltonian action principle for the slow oscillation-centre variables. A description in terms of the relativistic Vlasov equation for oscillation-centre distribution functions is introduced. A system of coupled field and kinetic eequations is obtained order by order.The final result is a generalized vector nonlineat schrödinger equation, with resonant particle effects included through the coupling to the perturbed Vlasov equations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I. A. 1964 Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover.Google Scholar
Arnold, V. I. 1989 Mathematical Methods of Classical Mechanics, 2nd edn. Springer.Google Scholar
Baym, G. 1985 Quark Matter ' 84 (ed. Kajantie, K.). Lecture Notes in Physics, vol. 221. Springer.Google Scholar
Bialynicki-Birula, I., Hubbard, J. C. & Turski, L. A. 1984 Physica 128A, 509.CrossRefGoogle Scholar
Boghosian, B. M. 1987 Covariant Lagrangian Methods of Relativistic Plasma Theory, Ph.D. thesis, University of California, Berkeley; LBL Report 23241.Google Scholar
Cary, J. R. 1981 Phys. Rep. 79, 131.CrossRefGoogle Scholar
Cary, J. R. & Kaufman, A. N. 1981 Phys. Fluids 24, 1238.CrossRefGoogle Scholar
Clemmow, P. C. & Dougherty, J. P. 1969 Electrodynamics of Particles and Plasmas. Addison-Wesley.Google Scholar
De Groot, S. R., Van Leeuwen, W. A. & Van Weert, C. G. 1980 Non-Equilibrium Relativistic Kinetic Theory – Principles and Applications. North-Holland.Google Scholar
Deprit, A. 1969 Celest. Mech. 1, 12.Google Scholar
Dewar, R. L. 1972 J. Plasma Phys. 7,267.Google Scholar
Dewar, R. L. 1973 Phys. Fluids 16, 1102.Google Scholar
Dewar, R. L. 1976 J. Phys. A: Math. Gen. 9, 2043.Google Scholar
Dougherty, J. P. 1970 J. Plasma Phys. 4, 761.CrossRefGoogle Scholar
Dougherty, J. P. 1974 J. Plasma Phys. 11, 331.Google Scholar
Dragt, A. J. & Finn, J. M. 1976 J. Math. Phys. 17, 2215.CrossRefGoogle Scholar
Dzhavakhishvili, D. I. & Tsintsadze, N. L. 1973 Soviet Phys. JETP 37, 666.Google Scholar
Flå, T., Ekiel-Jeż, M. L. & Kaufman, A. N. (to appear).Google Scholar
Goldstein, H. 1980 Classical Mechanics, 2nd edn, p. 583. Addison-Wesley.Google Scholar
Goldstein, P. P. 1980 Vlasov Equation in Kinetics of Systems like Breit-Darwin Plasma, Ph.D. thesis, Warsaw.Google Scholar
Goldstein, P. P. & Turski, L. A. 1984 Physica 127A, 549.Google Scholar
Hori, G. 1966 Pub. Astron. Soc. Japan 18, 287.Google Scholar
Ichimaru, S. 1973 Basic Principles of Plasma Physics. A Statistical Approach. p.53. Benjamin.Google Scholar
Ignatiev, Yu. G. 1981 Soviet Phys. JETP 54, 1.Google Scholar
Infeld, E. & Rowland, G. 1977 J. Plasma Phys. 17, 57.Google Scholar
Infeld, E. & Rowlands, G. 1990 Nonlinear Waves, Solitons and Chaos, chap. 8. Cambridge University Press.Google Scholar
Israel, W. 1963 J. Math. Phys. 4, 1163.Google Scholar
Jackson, J. D. 1960 J. Nucl. Energy C 1, 171.Google Scholar
Jackson, J. D. 1975 Classical Electrodynamics, 2nd edn, chap. 12. Wiley.Google Scholar
Jeffrey, A. & Kawahara, T. 1982 AsymptoticMethods in Nonlinear Wave Theory. Pitman.Google Scholar
Johnston, S. 1976 Phys. Fluids 19, 93.CrossRefGoogle Scholar
Johnston, S. & Kaufman, A. N. 1979 J. Plasma Phys. 22, 105.Google Scholar
Jütner, F. 1911 Ann. Phys. (Leipzig) 34,856; 35, 145.CrossRefGoogle Scholar
Kates, R. E. & Kaup, D. J. 1989 J. Plasma Phys. 42, 507.Google Scholar
Kaufman, A. N. 1984 Proceedings of 13th International Colloquium on Group Theoretical Methods in Physics (ed. Zachary, W. W.), p.26. World Scientific.Google Scholar
Kaufman, A. N. & Boghosian, B. M. 1984 Am. Math. Soc. Contemp. Maths 28, 169.Google Scholar
Kaufman, A. N. & Holm, D. D. 1984 Phys. Lett. 105A, 277.Google Scholar
Kaup, D. J. 1991 Directions in Electromagnetic Wave Modelling, (ed. Bertoni, H. L. & Felsen, L. B.). Plenum.Google Scholar
Klimontovich, Yu. L. 1966 The Statistical Theory of Non-Equilibrium Processes in a Plasma. Pergamon.Google Scholar
Kuz'menkov, L. S. 1978 Soviet Phys. Dokl. 23, 469.Google Scholar
Kuz'menkov, L. S. & Polyakov, P. A. 1978 Vestn. Mosk. Univ. Fiz. Astron. 19, 95 (in Russian).Google Scholar
Littlejohn, R. G. 1982 J. Math. Phys. 23, 742.Google Scholar
Mihalas, D. & Mihalas, B. W. 1984 Foundations of Radiation Hydrodynamics. Oxford University Press.Google Scholar
Nicholson, D. R. 1983 Introduction to Plasma Theory. Wiley.Google Scholar
Olver, P. J. 1986 Applications of Lie Groups to Differential Equations. Springer.Google Scholar
Rasband, S. N. 1983 Dynamics, chap. 10. Wiley.Google Scholar
Shukla, P. K., Rao, N. N., YU, M. Y. & Tsintsadze, N. L. 1986 Phys. Rep. 138, 1.Google Scholar
Stewart, J. M. 1971 Non-Equilibrium Relativistic Kinetic Theory. Lecture Notes in Physics, vol. 10. Springer.Google Scholar
Sudarshan, E. C. G. & Mukunda, N. 1974 Classical Dynamics: A Modern Perspective. Wiley.Google Scholar
Van Kampen, N. G. & Felderhof, B. U. 1967 Theoretical Methods in Plasma Physics. North-Holland.Google Scholar
Weitzner, H. 1989 RelativisticFiuid Dynamics (ed. Anile, A. & Choquet-Bruhat, Y.). Lecture Notes in Mathematics, vol. 1385, p. 211. Springer.Google Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley.Google Scholar